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An  efficient,  radial  basis  function-based  extension  of  multifidelity  sequential  Kriging
optimization was developed.  This method, referred to as multifidelity sequential radial basis
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Nomenclature
C = Cost
CD,i = Induced drag coefficient 
CDF = Cumulative Distribution Function
CDL = Cross-Disciplinary Link
CL = Lift coefficient
Cm = Pitching moment coefficient
d = Design space dimensionality
DOE = Design of Experiments
EGO = Efficient Global Optimization
EI = Expected Improvement
f = Function
HF = High-Fidelity
KRG = Kriging-based regression
LER = Leading Edge Radius
LF = Low-Fidelity
LSE = Least Squares Estimation
MFSKO = Multifidelity Sequential Kriging Optimization
MFSRBO = Multifidelity Sequential Radial Basis Optimization
MLS = Moving Least Squares
N[μ,σ] = Random process with normal distribution of mean μ and standard error σ
obj = Objective function
PRESS = Prediction Error Sum of Squares
PRG = Polynomial regression
q∞ = Freestream dynamic pressure
RBF = Radial Basis Function
s(f) = Standard error of function f 
SKO = Sequential Kriging Optimization
SPSA = Simultaneous Perturbation Stochastic Approximation
SRBO = Sequential Radial Basis Optimization
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SVD = Singular Value Decomposition
SVR = Support Vector Regression
TH = Maximum structural thickness at a given span location
x = Design vector
X = Design matrix
y = Spanwise coordinate
Y = Dependent variables data vector
^ = Estimated value
* = Effective best solution
α = Angle of attack
αo = Root chord angle of attack
γ = Metamodel parameter
Λ = Taper ratio
ρ = Fluid density
σVM = von Mises stress
θo = Root chord maximum structural thickness

I. Introduction / Motivation
he development of increasingly complex and integrated aerospace vehicles  that are capable of a variety of
missions  is  leading  engineers  and  scientists  to  consider  nonconventional  airframes,  new  structural  and

propulsion concepts and their interactions early in the design cycle.  The technical challenges faced in the design of
these  revolutionary  air  vehicles  range  from  considerations  of  extreme  environments  (e.g.,  hypersonic  or
transatmospheric vehicles) to large dynamic shape variations of micro UAVs.  This greater range of design options
must be examined in cross-disciplinary terms, where design space exploration is needed to reduce uncertainty and
increase knowledge to make better decisions.  The large dimensionality of such a design space traditionally requires
the  use  of  low-fidelity  methods  at  the  conceptual  design  stage,  but  the  need  has  long  been  recognized  that
information from high-fidelity analysis tools should also be incorporated early in the design process, although this
brings  along certain  challenges.   Increased  computational  power  and the proliferation of  new unmanned aerial
vehicle designs have been driving forces in the development of variable fidelity frameworks over the last decade.    

T

Advanced aerospace vehicle design methods must fuse data from multiple sources and various levels of fidelity.
Numerous factors  need to be considered,  including (Ref. 1) spatial  resolution, temporal  resolution,  the  physical
processes being modeled, the number of objects, number of attributes of each object, and the degree of interaction
between these objects.   

High-fidelity methods are typically more expensive, and must be used sparingly out of practical necessity.  Other
factors to consider are that high-fidelity analyses are assumed to be more accurate, but may not always be, and that
there  are  often  difficulties  related  to  obtaining  good  gradients.   For  example,  there  might  be  integer/discrete
variables associated with gross topological changes, e.g., number of compressor stages, number of engines, control
surfaces, and so on.  These amount to major discontinuities (“cliff edges,” in Jarrett's, Ref.  2, terminology) which
computationally efficient gradient-based design optimization methods cannot cross.

An obvious advantage of low-fidelity methods is that they are computationally inexpensive and fast.  More
rarely mentioned are the potential benefits of low-fidelity methods in a multifidelity framework, namely that they
enable effective design exploration, not merely because of their speed, but as an aid to escape noisy local optima due
to the nonsmooth nature of the design space, a common occurrence in high-fidelity analyses.  The disadvantages of
low-fidelity tools are that they may not work for unconventional designs or strongly nonlinear regimes (Ref. 3), or
may not be able to produce the quantities of interest (e.g., aerodynamic drag).

A significant issue in multidisciplinary frameworks is the difficulty in specifying consistency between models.
A low-fidelity and high-fidelity model are said to be weakly consistent if “the projection of the state of the higher
resolution model to the space of the lower resolution model is sufficiently close to the state of the low resolution
model” (Ref. 1).  In many applications, lower fidelity refers to lower resolution, but  may  also  refer to  different
methodologies involving significant approximations, not only missing detail but also possibly missing key physics
(e.g., absence of chemical reactions, aeroelastic/unsteady effects, viscosity, or turbulence).  

True integration of the results from codes of varying fidelity poses a number of challenges.  One of them is the
fact that prediction codes of varying fidelity levels use different input parameterizations and, therefore, operate in
different spaces (Refs. 4, 5).  Another challenge is the development of effective strategies when low- and high-
fidelity models are not consistent, or when weak consistency is satisfied only in a small region of the design space,
therefore limiting the efficiency of current multifidelity frameworks and, potentially, the breadth of design options
being considered.  The question of optimal sampling of the design space, given limited resources, is a critical one
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that is fundamentally linked to the characterization of uncertainty and uncertainty requirements.  Specifically, there
is a need to develop rigorous approaches addressing not only where to sample the design space, but also at what
level of fidelity.   

In  the past  two  decades,  there have been numerous implementations of variable fidelity ideas  based on the
concept  of   “bridge  functions”  as  a  re-anchoring  framework  for  correcting low-fidelity  analyses  in  order  to
approximate the results of high-fidelity analyses.  The “beta” factor initially proposed by Chang et al. (Ref.  6) was
introduced as a local multiplicative factor, although many researchers (e.g., Refs. 7, 8) have found it advantageous to
implement the additive form of the correction.   These schemes incorporate  Taylor  expansion-based corrections
between the low- and high-fidelity models, requiring the design space to be smooth, and may require low- and high-
fidelity data to be available at the same point.  These factors may result in relatively frequent high-fidelity updates
and, therefore, only modest improvements in computational savings over conventional optimization.  While useful
for establishing provable convergence to the high-fidelity optimum, the local correction method has a tendency to
limit the step sizes taken in optimization and, more generally, curtails design space exploration.  

As pointed  out  in  Forrester  et  al.  (Ref. 9),  efficient  global  optimization  revolves  around  being  able  to
successfully balance exploration and exploitation.  Thus, there is a need for a multifidelity framework allowing bold
optimization steps.  The present work considers both hierarchical1 and integrated2 variable-fidelity metamodeling
methods whose uncertainty is reduced with each evaluation.  In this work, a radial basis function embodiment of
these  ideas  is  used  to  benchmark  performance,  and  illuminate the  efficiency  potential  of multifidelity
multidisciplinary optimization. 

II. Objectives
Aerospace  finite  element  method (FEM)  and  computational  fluid  dynamics  (CFD)  simulations  continue  to

increase in fidelity/realism.  Yet, even as computer speeds increase, the most realistic models (e.g.,  of turbulent
flows) are still relatively slow computationally, making thorough optimization difficult.  In fact, the gap between the
computational  speed  of  low-fidelity  models  and  high-fidelity  models  continues  to  increase  also.   As  a  result,
methods for  multifidelity optimization which leverage  efficient  low-fidelity models promise to enable thorough
optimization.

In the years following Jones, Schonlau, and Welch (Ref. 10), there has been growing interest in optimization
using  global  metamodels,  e.g.,  Kriging  or  radial  basis  functions.   Unlike  other  design  of  experiments  (DOE)
methods, like sequential response surface methods, global metamodels can integrate and generate predictions over
the entire design space.  As a result, they can integrate an entire data set from an entire design optimization process
which  can  involve  human  participation  in  the  process.   Nonglobal  metamodeling  approaches  for  multifidelity
optimization are described in Singh and Grandhi (Ref. 11).  Advances in global metamodeling using radial basis
functions can be found in Refs. 12-15.  In particular,  Žilinskas (Ref. 15) proved the similarity between statistical-
and radial basis function-model based global optimization in the presence of noise.  In the present work,  the radial
basis function approach is selected, based on its suitability for use in efficient global optimization and its extension
to the multifidelity context (see Section III).

The objectives of the work presented in this paper include (1) developing a multifidelity multidisciplinary framework
through alternative formulations to previous methods, and computational and mathematical results, (2) extending Huang
et  al.'s  (Ref. 16)  multifidelity  design  space  sampling  strategy  to  manage  system  updates  within  integrated  and
hierarchical global metamodeling approaches, (3) extending the rigorous convergence results from Schonlau (Ref. 17) to
multifidelity optimization in the context of radial basis function methods and Kriging models, (4) developing adaptive
methods to achieve probabilistic convergence results and enhance performance, and (5) applying the proposed methods
to a flying wing-type UAV design function integrating information from structural and fluid models. 

III. Methods
This section describes the methods, assumptions, and procedures used in this work.  We begin with an overview

of the optimization process, contrasting the traditional approach and the multifidelity framework envisioned in this
work.  This is followed by a discussion of surrogate models, including the rationale for our choice of radial basis
functions.  Section V describes the optimization methods, and Section VI documents the computational analyses
used in this work. 

1 also referred to in this work as “cascading model” 
2 referred to in this work as the “augmented dimensionality model”
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A.  Overview 
In the conventional view of the design process, decisions evolve over time.  At the conceptual design stage and,

increasingly,  in  preliminary design,  a  large  array  of  options  and  cross-disciplinary  trades  are  considered,  even
though the knowledge of the system is necessarily imprecise (Lewis and Mistree, Ref. 18).  This is traditionally the
design space exploration phase,  where individual disciplines must be able to challenge the constraints of other
disciplines (Holden and Keane, Ref. 19) in order to come up with effective solutions.  An outcome of these analyses
is, traditionally,  to narrow down the design space to smaller, more manageable portions which are subsequently
investigated in more detail.  The intermediate level of fidelity, though more expensive, is then used to refine the
analysis, add geometric detail, and increase the physical fidelity of the models used, thus reducing the uncertainty in
the design.  Cross-disciplinary interactions are retained in the MDO methods used, but a smaller portion of the
design space is considered, to make this tractable in spite of the higher costs.  Finally, the detailed design stage is
used to further refine the analysis, narrowing the design to a handful of options.  

Figure 1.   Multifidelity optimization framework.

The proposed multifidelity multidisciplinary framework (Figure 1) merges information from multiple fidelity
levels and manages this information in order to achieve optimal sampling of the design space, both in terms of
design variables and level of fidelity.   The right-hand side in  Figure 1 represents analysis codes spanning three
hypothetical disciplines, e.g., fluids, structures, and guidance and control.  Each analysis code is represented by a 
symbol and is ranked according to its level of fidelity, i.e., the level of the physics included in the model and the
level  of geometric  detail.   Within the multidisciplinary multifidelity framework,  codes with compatible fidelity
levels  are  first  coupled  together  using  cross-disciplinary  links  (CDL).   Such  groupings  are  the  staple  of
multidisciplinary optimization (MDO) and include not only the code associations but also the nature of the coupling
between them.  Within each group, variables appropriately exchanged between disciplines, and the processes for
information exchange/update are well-defined.  For example, the disciplines within a group can be tightly integrated
or loosely coupled, physical interactions accounted for explicitly or through subiterations between codes, and so on.

A key element  of the proposed approach is the merging of  all  multifidelity data into a  global  probabilistic
response surface-based metamodel (see Section IV).  This model builds on the foundation provided by multifidelity
radial  basis  function  (RBF)  data  fusion  methods  (Ref. 20),  and  optimization  methods  using  probabilistic  RBF
networks (e.g., Ref. 21).  A key addition to these ideas is the use of a Multifidelity Sequential Kriging Optimization
(MFSKO)-like “expected improvement function” to manage when high-, medium-, and low-fidelity analysis tools
are  appropriate  as  the  next  observation  in  the  exploration  or  exploitation  of  the  design  space,  and  associated
metamodel  updates.   The  goal  of  balancing  exploration  and  exploitation  in  a  mathematically  rigorous  way  is
achieved  by  using  an  integrated  criterion  which  determines  simultaneously the  location  and  fidelity  level  of
subsequent searches.  This criterion is based on Kennedy and O'Hagan's original work  (Ref. 22), and subsequent
refinements by Huang et al. (Ref. 16), and Schenk et al. (Ref. 23).   

The work presented in this paper focuses primarily on the multifidelity aspects of aerospace vehicle analysis and
design.  Thus, the “isofidelity”-groupings depicted in Figure 1 represent an encapsulation of existing analysis tools,
solution methods, and information exchange processes which can operate independently of each other.  The central
question addressed in this work is how to merge and manage the information from these multiple fidelity groupings.
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B.  Background/Rationale
A summary comparing the pros and cons of four different  classes of surrogate-based methods is provided in

Table 1.  This summary organizes information gleaned in large part from the review papers of Forrester et al. (Ref. 9)
and Queipo et al. (Ref. 24), supplemented with our own experience.  The table is organized as follows.  The four
classes  of  methods  (polynomial,  radial  basis,  Kriging,  and  support  vector  regression)  are  listed  across  the  top.
Attributes  are listed by row, and are categorized according to (a) forming the metamodel surrogate, (b) optimization
considerations, and (c) multifidelity modeling.  Whereas many of the table entries are qualitative (e.g.,  “Low” vs.
“Med. Low”),  their intent is to give a sense of the relative performance of one method over another.   Whenever
possible, this sense of performance is quantified in terms of scaling with respect to number of points, search space
dimensionality, and so on.  Particular method variants may cross boundaries, and not all methods are represented, so
this is not intended to be a comprehensive guide but, rather, a reference to help explain where the proposed methods
(highlighted) fit within the spectrum of existing approaches.  

Table 1.  Suitability Assessment of Surrogate-Based Methods for Multifidelity Multidisciplinary Optimization

It  is important to keep in mind that the applicability or optimality of a given method is problem-dependent.
A method which may seem unattractive due to its computational demands (e.g., if it involves layer of optimization
upon layer of optimization on the surrogate) may still be worth the effort – the answer depends on how costly a
single high-fidelity evaluation is.  Forrester et al. (Ref. 9) note that, for those very applications, i.e.,  those most
likely to be solved in a highly parallel computing environment, “setting up and searching a surrogate of any kind can
(become the) bottleneck. (...) This fact will always limit the amount of time we can dedicate to the building and
searching of surrogates.”

In part for this reason, the multifidelity multidisciplinary optimization approach adopted in this work centers on
radial basis function (RBF) surrogates, including several of their variants (fixed basis RBF, quasi-parametric RBF,
and parametric RBF).  As depicted in  Table 1, this class of methods offers qualities which very nearly approach
those  of  Kriging  (in  terms  of  modeling  ability,  flexibility,  and  generalization  properties)  but  with  potentially
significant advantages in terms of performance and scaling.  The RBF class of surrogates covers a wide range of
methods, from simple fixed basis RBF to fully parametric RBF approaching the complexity of Kriging.  Within this
class is the freedom to trade generality for performance, depending on which parameters are solved by optimization
(parametric RBF) versus which parameters are fixed (RBF).  A particularly efficient middle ground is the quasi-
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parametric RBF framework, where metaparameters evolve according to a prescribed algorithm.  Such algorithms
may be rooted in heuristics and are designed to ensure adaptivity while maintaining high performance.

C.  Simple Radial Basis Function Model Description
In an N-dimensional design space, a surrogate function F : RN → R is constructed by satisfying data constraints at

P available data points.  If this response surface acts as an interpolant, then the function F is required to satisfy the
constraints

F  X i = Y i , i = 1, , P       (1)

where each  Xi  is an N-dimensional vector of design variables, and Yi are the corresponding dependent variables.  In
the case  where  F represents,  instead,  a regression  model fit  to the data,  then the response surface  is  required to
minimize in the least squares sense the distance ║F(Xi) – Yi ║, i = 1,...,M, M ≥ P.

In the radial basis function approach, the metamodel  F  is expanded into basis functions  Φk which are radially
symmetric about their control point, Γk :  

FX  =∑
k

ck k X , k , b k  k = f ∣∣X − k∣∣, b k        (2)

where  f  is a scalar shape function (for example, a Gaussian), bk is an adjustable scale or stiffness parameter, and ║.║
designates the Euclidean norm.  For example, if  f  is chosen to be a Gaussian: 

Φk (X ,Γb ,b k) = exp(−(X −Γ k )
T
(X −Γ k )

bk
2 )      (3)

With the additional assumptions that (a) the stiffness  bk is uniform, and (b) the control points are chosen among the
available data points, the linear model regression design matrix equation [A][c] = [Y] is given by:

[
f (∣∣X 1−X 1∣∣) f (∣∣X 1−X 2∣∣) … f (∣∣X 1−X P∣∣)
f (∣∣X 2−X 1∣∣) f (∣∣X 2−X 2∣∣) … f (∣∣X 2−X P∣∣)

⋮ ⋮ ⋮ ⋮
f (∣∣X M− X 1∣∣) f (∣∣X M−X 2∣∣) … f (∣∣X M−X P∣∣)

].[
c 1

c 2

⋮
cP
]= [

Y 1

Y 2

⋮
Y M

] (4)

In the case where uncertainty intervals for the Yi are available, and provided these intervals correspond to random
uncorrelated noise (variance σ0

2), the variance of the surrogate prediction at point X is given by 

σ̂2(X) = σ0
2 .Φ(X )T(AT A)−1Φ( X) (5)

where Φ(X) = [Φ1 ,Φ2 ,...,ΦP ]T (Ref. 25).  

IV. Multifidelity Radial Basis Function Surrogate Models
This section describes multifidelity modeling and discusses its implementation for surrogate models involving

radial basis functions.  We describe two modeling formulations and variance and bias errors.  The first derives from
previous research in which radial basis functions model the systematic errors of each surrogate system in relation to
higher fidelity systems.  The second formulation treats fidelity as a design variable, and adjusts the specific scaling
in the radial function. 

A.  Modified Kennedy and O'Hagan Scheme
The first and primary modeling formulation is adapted from Kennedy and O’Hagan (Ref. 22) involving both linear

and Kriging models. This was the approach used in Huang,  Allen, Notz,  and Miller (Ref. 26).   The “cascading”
formulation is:  

f l (x) = f l−1(x) + δl (x) (l = 2, 3, … , m) (6)

where  fl is the function evaluated at fidelity level  l and  δl(x) is independent of  f1(x),  f2(x), …,  fl-1(x) and  x  is a  d
dimensional decision vector.  Hypothetically, different levels of l also could be different levels of a discrete factor
for the same fidelity level.  For convenience in the notations below, we also let:  

f 1(x) = δ1(x) (7)

Note that for l = 2, 3, …, m, δl(x) can be understood as the “systematic error” of a lower-fidelity system, (l–1), as
compared to the next higher-fidelity system, l.  In these cases,  δl(x) is usually small in scale as compared to fl(x),
otherwise there will be no reason for the lower-fidelity system to exist.  Of course, in some cases, physics may be
missed in low-fidelity model(s) and δl(x) will be large. 
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In radial basis metamodeling, the response is assumed to be a linear model.  We use another radial basis function
to model the departure of the lowest-fidelity system, δ1(x), as well as the difference between systems, δl(x) (l = 2, 3, 
…, m).  Therefore, we have  

δ1(x , S1 ,… , Sm) = b (x , S1 ,…, Sm)
Tβ l + ϵ l (l = 1, 2, … , m) (8)

where  bl and  βl are the basis functions and coefficients, respectively,  of a linear model.  Also, the sets  S1,…,Sm

contain the input points for selected past  runs at the  m levels of fidelity.   In  general,  not all previous runs are
included in the model so that there can be lack of fit estimation.

The linear model portion is richer in Eq. (8) than in Ref. 26 because it contains dependence on design points.  The
basis functions of the linear model here are radial centered on the design points.  By basing the model centering on
design points there is no nonlinearity associated with picking runs.  

Implementation of the above is carried out in the present paper using either Gaussian or reciprocal multiquadric
basis functions centering on k selected runs, with similar results in both cases.  For the case of a single fidelity level,
the Gaussian basis functions are defined as  

ϕ(x , x j ) = exp(−θ(x−x j)
T (x−x j )) ( j = 1,2,… , k) (9)

where θ is an adjustable scale parameter.  In the following discussion, we focus on θ as a fixed parameter.  However,
the adjustment of  θ as the optimization proceeds has shown promise for improving the numerical results on test
problems.  In general, it is desirable to increase θ as a way to foster improved results.  

Therefore, the general form of the prediction model at the point x at fidelity level l is:  

f l( x ) = ∑
i=1,…, l

∑
j⊂S i

ϕ( x , x j) βi , j (10)

With these assumptions, the linear model design matrix, X, is somewhat sparse.  For example, with three fidelity
levels, n1, n2, and n3 total runs at each of the fidelity levels, and k1, k2, and k3 runs actually included as part of the
model, the X matrix is:  

[
ϕ(x 1 , x1) … ϕ( x1 , x k1

)

⋮ ⋱ ⋮ 0 0
ϕ (x n1

, x1) … ϕ(x n1
, xk 1

)

ϕ(x n1+1 , x 1) … ϕ(x n1+1 , x k 1
) ϕ( xn1+1 , x k1+ 1) … ϕ (x n1+1 , x k 1+ k 2

)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 0
ϕ(x n1+ n2

, x1) … ϕ(x n1+ n2
, x k1

) ϕ(x n1+ n2
, x k1+1) … ϕ(x n1+ n2

, x k1+ k2
)

ϕ(x n1+ n2+1 , x1) … ϕ(x n1+ n2+1 , x k1
) ϕ(x n1+ n2+ 1 , x k1+1) … ϕ(x n1+ n2+ 1 , x k1+ k2

) … … ϕ(xn1+ n2+1 , x k1+ k2+ k 3
)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
ϕ( xn1+n2+ n3

, x1) … ϕ( xn1+n2+ n3
, xk 1

) ϕ(x n1+ n2+n3
, x k 1+1) … ϕ( xn1+n2+n3

, xk 1+k 2
) … … ϕ( xn1+n2+ n3

, xk 1+k 2+ k3
)

]
In practice, Eq. (10) is fitted by solving the normal equations using singular value decomposition (SVD) based on the
algorithm  of  Ref. 27,  with  modifications  to  facilitate  multivariate  modeling,  covariance  estimation,  and  error
prediction.  

The modified version is order (n1 +…+  nm)3 but it requires generally negligible computing time compared with
likelihood optimization in sequential Kriging optimization (Ref. 26).  Also, linear model estimation using SVD is
generally more reliable and reproducible in part because of limited sensitivity to numerical issues.  

B.  Augmented Dimensionality Formulation
An alternative modeling formulation consists of addressing fidelity based on scaling inputs (Ref. 20).   In  this

formulation, global adjustments to distances are made based on the differences between fidelity levels of the runs.
Assume that f(i) is a 1 × m vector with a 1 when i is the fidelity level of run i or 0 otherwise.  In this approach, we
consider adjustable parameters, γi ≥ 0 , for each of the design dimensions i = 1,…,d and Gij ≥ 0 for all fidelity levels
j = 1,…m and i = 1,…m.  The revised density is:   

ϕ(xi , f (i) ,x j , f ( j ))= exp(−∑
k=1

d

γi(x k , i−x k , j)
2− Gij∣∣f (i)−f ( j)∣∣2) (11)

where xk,i is the kth element of the vector xi.  At a fidelity level q, the model is simply:  

f (x , q) = ∑
j=1,…, n

ϕ[ x , q , x j , f ( j)] β j (12)

And the design matrix is: 
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X = [
ϕ(x 1 ,γ1 , x 1 ,γ1) … ϕ( x1 , γ1 ,x n ,γn)

⋮ ⋱ ⋮
ϕ( xn ,γ n , x1 , γ1) … ϕ(x n , γn , x n , γn)

] (13)

where  it  is  assumed that  all  runs have  been  included in the model  as  an example.   Therefore,  Eq. (11) would
represent a saturated model that generally passes through all of the design points. 

This alternative, more concise formulation has the disadvantage that the  Gij weight parameters must be adjusted
heuristically.  Also, there is no guarantee that the process will converge to accurate models of the bias or systematic
errors or the predictions of the highest fidelity model will converge.  Yet, the augmented dimensionality approach
includes far fewer parameters to be estimated and can be expected to offer efficiency advantages for cases in which
assumption parameters match problem properties closely.  

C.  Modeling Prediction Variance
A possible advantage of Kriging models over radial basis functions is that they provide a model of mean and

uncertainty even if the model passes through all the design points.  Kennedy and O’Hagan (Ref. 22) and others have
clarified the Bayesian nature of the intervals.  Yet, the interpretation and validity of the derived intervals in realistic
cases is not fully understood.  At the same time, the computational performance in test problems of methods based on
these Kriging error estimates appears to be good.

By  contrast,  the  radial  basis  functions  considered  in  previous  sections  are  associated  with  regression  type
intervals.  If the prediction model passes through all the design points, the standard regression intervals indicate zero
prediction errors at all points.  This follows because the standard intervals are based on so-called variance errors and
therefore derive entirely from the assumed repeatability or random errors.  We consider four possible approaches to
address predictions of prediction uncertainty: 

• Assumed random errors – Ad hoc assumptions of random error standard deviation,  σ, inserted into the
prediction variance formula (similar to Eq. (5)): 

σ̂ l
2(x ) = Var [ y prediction (x , l)] = σ0

2 b (x , S 1 ,… , S l )
T (X ' X )−1b (x , S 1 ,… , S l) (14)

This approach has some intellectual coherence in the context of FEM.  This follows because there is often a
known or typical uncertainty associated with computer code, e.g., related to the mesh size.  Yet, the errors
are not like typical repeatability errors.

• Simply estimated random errors – A selected set of runs can be dropped from the model and used for
estimating σ, as is common in regression.  In our computational results, we simply drop the most recently
collected r runs from fitting.  The standard Analysis of Variance estimate of the random error is then:

σ̂0 = √[(Y − X β)
T
][(Y − X β)] / (n−r) (15)

which is based on an equal variance assumption as is standard in regression.

• PRESS estimated random errors – The standard regression cross validation method of leaving out each
observation,  fitting with the others,  followed by rotating to estimate  σ.   This  estimate is  based  on an
average of calculations from Eq. (15). 

• Bias plus variance – Recently developed formulations for the variance and the bias have been developed at
OSU which  make  reference  to  high-order  polynomial  true  models.   The  latter  offer  an  intellectually
coherent  way to assign  uncertainty even  for  cases  like FEM with known perfect  repeatability.   Tseng
(Ref. 28) provides several useful formulas. 

This last option is in principle the most attractive.  However, in practice estimating bias errors requires the assumption
of the model form of the true model, e.g., a fourth-order polynomial, and a distribution of the unknown coefficients.
The associated arbitrariness of related assumptions makes these methods seem less attractive.  Yet, Kriging models
have associated ambiguities also relating to the validity and convergence of the assumed correlation parameters.  Thus,
the present work focuses on the first two options from the above list, leaving the last two options for future research. 

V. Optimization Methods
This section describes the central optimization problem and solution method framework.  The framework is based

on sequential optimization using radial basis function metamodels.  It is based on a search after every computational
analysis3 for the location of the next run in the parameter and fidelity space that maximizes the expected improvement
in a manner similar to Huang, Allen, Notz, and Miller (Ref. 16).  Next, the expected improvement function is described
and method variations based on it are defined.    

3 also referred herein as “experimental run”
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A.  The Optimization Problem
Suppose there are a total of m systems to draw evaluations from, including the real and the surrogates.  Denote the

output functions of these systems in increasing order of fidelity by f1(x), f2(x), …, fm(x), where x is the input vector.
Therefore, f1(x) has the lowest fidelity, and fm(x) has the highest fidelity.  As mentioned previously, the highest-fidelity
system is the system of interest, therefore the goal is to minimize fm(x) within the feasible region, χ, i.e. 

 min
x∈χ

f m(x )
(16)

We consider  the systems as  black boxes that  provide  no information  other  than measurements  of  the outputs.
Denoting by  d the dimension of the input space, we assume that the feasible region  ⊂Rd  is connected and
compact.  

Each system is associated with a cost-per-evaluation, which is denoted by C1,  C2, …, Cm, respectively.  In this
research, the total cost of all evaluations measures the efficiency of the optimization scheme.  Usually,  a lower-
fidelity evaluation is cheaper than a higher-fidelity evaluation, i.e., C1 < C2 < … < Cm.  Also, for now we assume that
the cost of even the cheapest system is somewhat expensive, such that it is “worthwhile” to regenerate a radial basis
function metamodel in order to determine the next search location.  

In addition, the measurements of a system output may contain random error or noise.  For each system, we assume
that random errors from successive measurements are independent identically distributed (IID) normal deviates. 

B.  General Optimization Framework
The steps of Multiple Fidelity Sequential Radial Basis Optimization (MFSRBO) are outlined as follows:

Step 1: Initialize radial  basis function parameter(s),  e.g.,  γ, and the residual parameters,  e.g.,  r,  the number of
computational analyses for residual or error estimation.

Step 2: Perform an initial experimental design involving all fidelity levels.  Section C below describes the options
and focuses  on  n run  Latin  hypercube  initial  experiments,  following Huang,  Allen,  Notz,  and  Miller
(Ref. 16).

Step 3: Fit the radial basis function of the selected type to all available data using singular value decomposition
(SVD)-based least squares estimation.  

Step 4: Find  the  location  and  fidelity  level  of  the  new  evaluation  that  maximize  the  augmented  expected
improvement (EI) function.  If the EI function is sufficiently small, go to Step 6.

Step 5: Conduct an evaluation at the selected point from Step 4.  Go to Step 3.

Step 6: Perform an additional  search  and/or  evaluation to  evaluate solution quality.   For example,  apply trust
region evaluation which includes a check for Karush-Kuhn-Tucker point convergence.

Note the removal of a diagnostic step,  as compared to the approach used in Ref. 16, because there is no need to
assume zero expected mean for the biasing functions, δl.  This constitutes one advantage of sequential radial basis
optimization (MFSRBO) methods, which may be expected to lead to relatively robust performance, particularly in
cases involving large systematic errors.  

By convention, Step 1 is also referred to as the “initial fit” stage, whereas Steps 4 and 5 are called the “infill” or
“update” stage.  The sequentially added evaluations are also called the “infill” or “update” points.  The proposed
method differs from its predecessors mainly in the following two aspects: 1) the radial basis function metamodel is
generated using multiple fidelity data, and 2) the EI formulation takes into account not only the location but also the
fidelity level of an infill point.  

C.  Design for Initial Fit
Step 2 in the previous section involves an experimental design for an initial fit.  This is essentially the same as the

initial step in methods based on Kriging models.  Again, assume the number of factors is d.  For the modified Kennedy
and O'Hagan scheme, we use an  n = 10 × d run maximum minimum distance Latin hypercube (from the  lhsdesign
function in MATLAB®) for the lowest fidelity system and then select a subset for higher fidelity systems.  If the system
includes random errors, d replicates are added to all levels at locations where the best responses are found.

As another alternative for future exploration, we suggest an initial design that includes all points on a grid for the
lowest fidelity level.  For each higher fidelity system, a subset of the previous points is selected including the q% of the
best results from lower fidelity levels.  The numerical examples shown here typically use q = 25%.  The rationale for
using a grid instead of a Latin hypercube is that the projection properties of Latin hypercubes are likely not relevant
since all systems are generally important.  Also, radial basis functions are not affected by the numerical errors for
Kriging models associated with equally spaced inputs.  
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D.  Expected Improvement Functions
The expected improvement function fits into the search framework and is used to select the next “infill” point.  The

function  balances  the  desire  to  improve  the  search  criterion  with  the  desire  to  reduce  uncertainty  in  a  manner
reminiscent  of  trust  region  point  selection.   The methods explored  here  are  a  straightforward  application  of  the
formulation in Huang, Allen, Notz, and Miller (Ref. 16) except that they are based on radial basis functions instead of
Kriging models.  

Therefore,  for Multiple Fidelity Sequential Radial  Basis Optimization (MFSRBO),  the following augmented
Expected Improvement function is proposed:  

EI ( x , l )≡E
ε
[max ( f̂

m
( x*)− f̂

m
( x )−σ

m
( x)ε , 0) ]⋅α

1
( x , l )⋅α

2
( x , l )⋅α

3
( l ) (17) 

where ε is normally distributed N[0,1] and
α

1
(x , l ) = function that discounts systems based on their predicted local accuracy,  (18)

α
2
( x , l ) = (1− σ̂

0
/ √σ̂

l
2( x )+σ̂

0
2) ,  (19)

and α
3
( l) =

Cost m

Cost
l

.

If the problem is deterministic, i.e., with zero repeatability error, then we (generally) use α2(x,l) = 1 and f̂ m ( x*
)  is

the minimum of the already sampled points.  More generally, if at least a single system has noise, in Eq.  (17),  x*
stands for the current “effective best solution” defined by

x*
= argmax

x∈{ x1 , x 2 , . . . xn }
[ u( x )] (20)

where u ( x) =− f̂
m
( x )−μ σ̂

m
( x ) .  The formula from Jones, Schonlau, and Welch (Ref. 10) is: 

E
ε
[max ( f̂

m
(x*)− f̂

m
( x )−σ ( x)ε ,0) ]=

( f̂
m
( x* )− f̂

m
( x))ψ ( f̂ m( x*)− f̂ m ( x )

σ̂ m (x ) ) + σ̂
m
( x)ϕ( f̂ m ( x* )− f̂ m ( x)

σ̂ m( x ) )
(21)

where ψ  is the cumulative normal, and ϕ  is the normal density.  We need the two formulas for the variance, i.e.,
with and without bias.  In Ref. 16, α1  was chosen as 

α
1
(x , l )=corr [ f̂

m
( x)+ϵ

1
σ̂

m
( x ) , f̂

l
( x )+ϵ

2
σ̂

l
( x)] (22)

where “corr” is the correlation function and ε1 and ε2 are independent normally distributed deviates.  This choice has 
the following desirable properties: 

• It is easy to compute in the context of Kriging models,
• When l = m, it equals 1.
• For deterministic systems, it equals zero at past design points since σl(x) is zero.

Unfortunately,  for  radial  basis  function  systems,  Eq. (22)  is  not  easy  to  compute.   In  the  “augmented
dimensionality” version of our method, we inserted an estimate of Eq. (22) based on numerical integration.  For
other methods, we used the following formulation which is relatively easy to compute:  

α1 (x , l ) =
σ̂

l
( x )

∣ f̂ m( x)− f̂ l( x )∣+ σ̂ m( x ) (23)

where |.| is the absolute value.  This approach has the above-mentioned desirable properties in the context of radial
basis functions.  

E.  Methods Variations
Every combination of modeling method, expected improvement function (assumed random error, simply estimated

random errors,  PRESS, and bias plus variance),  expected improvement function (deterministic or stochastic),  and
termination sequence (simple or trust region) hypothetically corresponds to a method variation.  Here, we consider only
a select few combinations, characteristics of which are summarized in Table 2.  

If the method has simple termination then it is called multifidelity sequential radial basis optimization (MFSRBO)
or, for cases involving only a single level of fidelity,  sequential radial basis optimization (SRBO).  If  the method
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terminates by applying a downhill search such as trust region augmented Lagrangian methods, then we refer to the
method as a “hybrid.”  

 Table 2.   Variants considered in the computational and theoretical approach.
Method Variant Prediction Uncertainty EI Function Termination

 1. MFSRBO: augmented dimensionality Variance Intervals based on 
assumed prediction errors

Deterministic Simple

 2. MFSRBO: cascading model Variance intervals from 
estimated random errors

Deterministic Simple

 3. SRBO: cascading model Variance intervals from 
estimated random errors

Stochastic Simple

 4. Hybrid Variance intervals from 
estimated random errors

Both Trust Region Augmented 
Lagrangian

VI. Computational Analysis Methods
The computational results presented in this paper consist of several test problems (e.g., Branin function, multifidelity

Rosenbrock function) and two applications involving computational structural and computational fluid modeling.  
For the structural analysis tool we used McIntosh Structural Dynamics' finite element code CNEVAL (Ref. 29).  The

wing structure was modeled using conformal quadrilateral plate elements cantilevered at the root chord.  Given the
normal aerodynamic forces, CNEVAL provides the structural displacements, stresses, frequencies, and overall structural
weight.  CNEVAL was used to predict the static aeroelastic deformations and to verify that structural limits were not
exceeded.   CNEVAL uses  the  current  wing planform information,  along with thickness  distribution  and  material
properties, and updates the finite-element model of the wing, which is subdivided into quadrilateral panels used to
distribute the aerodynamic loads for the wing displacement calculations.  Each panel is divided into 2 triangles.  An
option also exists to further subdivide a quad element into 4 triangles for greater accuracy.  Both high- and low-fidelity
structural  modeling were carried out using CNEVAL by changing the finite element discretization, as described in
Table 3. 

Table 3.   Finite element discretization.
Wing Design

Problem
Fidelity

Level
 Number of Structural Elements
Chordwise Spanwise

Element Type

Unswept tapered
High 10 15 4 triangle elements per structural quad
Low 2 2 2 triangle elements per structural quad

UAV, swept
High 10 15 2 triangle elements per structural quad
Low 4 7 2 triangle elements per structural quad

A version of NEAR's intermediate-level aerodynamic prediction code MISDL (Refs. 30, 31) was used as the high-
fidelity fluid model.  MISDL is based on panel methods, vortex lattice with compressibility correction for subsonic flow,
and other classical singularity methods enhanced with models for nonlinear vortical effects.  The method is applicable to
subsonic and supersonic flight vehicles including aircraft, UAVs, missiles, and rockets.  Circular and noncircular cross
section bodies are modeled by either subsonic or supersonic sources/sinks and doublets for volume and angle of attack
effects, respectively.  Conformal mapping techniques are used for noncircular bodies.  The fin/wing sections are modeled
by a horseshoe-vortex panel method for subsonic flow and by first-order constant pressure panels for supersonic flow.
Up to three lifting surface sections can be modeled, and nonlinear fin and body vortices are modeled.  MISDL predicts
overall  aerodynamic  performance coefficients  and detailed aerodynamic  loading distributions.  The code has seen
extensive  use  in  missile  aerodynamic  analysis  and  design,  including  aerodynamic  shape  optimization  and
multidisciplinary design optimization when coupled to a structural finite element model.  In recent years, MISDL has
seen use in the analysis of manned and unmanned (UAV) aircraft. 

OPTMIS is the name used to designate the version of MISDL that is coupled with CNEVAL.  The cross-disciplinary
coupling is handled by the OPTMIS logic through successive iteration between codes.  OPTMIS handles interpolation,
displacement and load transfer operations and iterates between aerodynamic and structural predictions until a prescribed
convergence level is  achieved.  Convergence is  reached when the change in the displacements between successive
iterations is less than a user-prescribed threshold at all structural node points.  For the purposes of this study, OPTMIS
was enhanced with the computation of the induced drag.  Rather than incorporating a Trefftz plane analysis, such as
might be done in an Euler code, the induced drag was computed using a direct method, as follows.  

To compute the induced forces on the wing, the Kutta-Joukowski theorem is used:  F⃗
i
=ρ u⃗

i
× Γ⃗

i .  This induced
force vector is computed on each panel as the cross product of the total induced velocity on the panel (sum of all vortex
lattice  induced  velocities;  the  freestream  velocity  being  omitted)  and  the  panel  bound  vortex  vector.   The  drag
component of F⃗

i from each panel is computed and summed to obtain the total induced drag.  Several test cases were
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used to verify the calculation, and the theoretical limit of CDi = CL
2/(πAR) was obtained for elliptically loaded wings.  

The low-fidelity fluid modeling amounted to simple lifting line theory, conveniently implemented within OPTMIS
using a degenerate panel layout, as shown in Table 4.  Code robustness issues precluded the use of this implementation
for the case of the UAV wing planform and, so, for this case,  the low-fidelity model consisted of a coarse panel
discretization aerodynamic model, the details of which are also furnished in Table 4.  

Table 4.   Aerodynamic Panel Layout.
Wing Design

Problem
Fidelity

Level
 Number of Aerodynamic Panels
Chordwise Spanwise

Spanwise Panel Layout

Unswept tapered
High 10 15 Cosine distribution
Low 1 2 Uniform

UAV, swept
High 10 15 Uniform
Low 4 7 Uniform

The isotropic material used for the structure was aluminum.  We used the following material constants: 

Table 5.   Material Properties.
Material Property Value

Young's modulus

Poisson's ratio

10.5× 106 lbf/in 2

0.3

Density

Maximum allowed von Mises stress

0.1 lb/in3

22.5 × 103 lbf/in 2

The structural cross section geometry was self-similar as a function of span, and idealized as shown in Figure 2.  All
parameters in Figure 2 were modeled as being linearly varying from root to tip, with maximum and minimum values
indicated in Table 6.  

Figure 2.   Structural cross-section.

 

Table 6.   Geometric Parameters (ft).

Geometric Parameters Tapered wing UAV wing

X1_root 0.2 0.348

X2_root 0.3 0

TH_root variable 0.025

X1_tip 0.2 0.103

X2_tip 0.3 0

TH_tip 0.028 0.025

Leading Edge Radius (LER) 0 0

VII. Results

The results presented in this paper are organized as follows.  Convergence results are first presented, followed by
computational results.  The computational results include comparisons between methods based on single fidelity level
results  (Section B.1),  application  of  multifidelity  optimization  to  model  problems  (Section B.2),  and  multifidelity
multidisciplinary design problems involving aeroelastic wings.  

A.  Convergence
This section describes rigorous convergence of the methods that we call “hybrid” methods (see  earlier section).

The convergence proof is obvious and builds on the multifidelity convergence results from Rodriguez, Renaud, and
Watson (Ref. 32).  Those authors described rigorous results and showed that their trust region method converged under
the  assumptions they  defined.   Their  results  hold for  deterministic  optimization only and  are  typical  perhaps  of
nonlinear programming convergence to local minima results.  In general, with only a few conditions any downhill
search converges.  The contribution here relates to the multifidelity aspect of the modeling.

After  clarifying  their  conditions and  the  trivial  convergence  of  hybrid  methods we discuss  how some of  the
conditions used in Ref. 32 might be relaxed and computationally efficient methods might be developed with rigorous
guarantees.  The hybrid methods are assumed to be likely to offer global results similar to other methods based on
global methods and convergence similar to trust region methods.  Yet, it is believed further method development will
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be needed to achieve both global and rigorous convergence results and the computational efficiency of nonhybrid
methods.  

1.  Convergence Conditions  
Trust region augmented Lagrangian multifidelity methods have been proven to converge to local optima of the

highest fidelity system (Ref. 32).  Yet, their assumptions include that the systems are deterministic and that the fidelity
level, ψ, can be continuously adjusted.  In the context of multiple local minima they can be considered inferior since
sequential  optimization  methods  using  global  metamodels  have  been  demonstrated  on  test  problems  to  converge
efficiently to the global optimum. 

The purpose of this section is to clarify the conditions used to prove the trust region convergence.  As a result,
reviewing the assumptions from Ref. 32 clarifies the convergence criteria for hybrid methods.  It also illuminates the
conditions and issues  for  future,  more  efficient  hybrid  optimization method convergence.   The list  of  underlying
assumptions can be found Ref. 33.  

2.  Convergence Results  
Clearly, if a method can be applied starting at any point and converge, convergence is guaranteed starting from the

output of a SRBO or MFSRBO method.  Therefore, simple hybrid methods converge if the method used in the last phase
converges. 

Nontrivial combinations of sequential radial basis optimization (SRBO) and trust region components can certainly be
developed that offer computational efficiency advantages and proven convergence benefits.  The key issues are the
issues for virtually all nonlinear programming methods: (1) maintaining of positive probability of improvement and
(2) converging only when the conditions for a local minimum (KKT) are met.  Also, the proofs in Ref. 32 are presented
in terms of a series of paired levels of fidelity. It seems likely that the key steps can be revised so that the fidelity levels
can be discrete and the proof still applies.  

B.  Computational Results
The MFSRBO algorithm outlined above was developed, tested, and refined based on a numerical test bed consisting

of eight different optimization problems.  The main characteristics of these eight problems are outlined in Table 7.    

Table 7.   Overview of numerical test cases.
Multi- Design Number of Constraints

Test Problem Name Goal / Comment Disciplinary Fidelity Variables Aero. Structural

Six hump Branin function

Unconstrainted
minimization,

exhaustive grid-based
search, comparison to

other methods

no no x1, x2 n/a

Rosenbrock function &
approximation

Unconstrainted
multifidelity
minimization

no ✓ x1, x2 n/a

Symmetrized Rosenbrock
function & approximation

Multifidelity
optimization with two

distinct optima
no ✓ x1, x2 n/a

Aeroelastic Wing Design 1

          “ 2

          “ 3

          “ 4

Minimize induced
drag, subject to lift and

stress constraints
✓ ✓

α0 1 1

α0, dα/ds 1 1

α0, dα/ds,
θ0

1 1

α0, dα/ds,
θ0, Λ

1 1

UAV Aeroelastic Wing Design Optimize stability,
subject to trim,

payload, and stress
constraints

✓ ✓ α0, dα/ds 2 1

With the exception of the first test problem (Section B.1), the surrogate search used in each of the optimizations amounts
to a multistart steepest ascent scatter-and-poll strategy (Ref. 24) for calculating arg (max (EI (x , l)) ) .  
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1.  Single Fidelity Level Results  

The single fidelity results presented in this section are almost the same as in Refs. 16 and 26.  This follows because
in virtually all of the test problems good solutions were obtained from the initial design portions which were identical
between the Kriging model and radial basis function-based approaches.  In all of the problems in Ref. 16, for example,
fewer than 25% of the evaluations were after the initial design evaluations.  First, we consider the single fidelity noisy
case for simplicity.

In the results shown below the Sequential Radial Basis Optimization (SRBO) method is empirically compared
with  three  alternative  approaches  from  the  literature.   The  first  alternative  is  the  Simultaneous  Perturbation
Stochastic Approximation (SPSA) from Spall (Ref. 34).  The second approach is the Revised Simplex Search (RSS)
procedure, a variant of the Nelder-Mead method, proposed by Humphrey and Wilson (Ref. 35).  As the original RSS
procedure was not designed to handle constraints, we modify it so that whenever a point is infeasible, the algorithm
selects the nearest  feasible point instead.  The third approach is the DIRECT method developed by Gablonsky
(Ref. 36) et al.

Here, we focus on a single fidelity system with noise.  In this case, the test function is the six hump camelback
function from Branin (Ref. 37) with ~ N(0, 0.122) noise added.  The function is:  

f (x ) = 4 x1
2
− 2.1 x1

4
+ x1

6
/3 + x1 x 2 − 4 x2

2
+ 4 x2

4

−1.6 ≤ x1 ≤ 2.4 , −0.8 ≤ x2 ≤ 1.2
x* = (0.089,−0.713) ∧ (−0.089, 0.713), f * =−1.03

(24)

In  this  problem,  there  are  six  local  and  two  global  optima.  For  the  single  fidelity,  noisy  case,  the  expected
improvement function (Eq. (17)) simplifies with α1 = α3 = 1.

Figure 3 plots two randomly selected sequential radial basis optimization (SRBO) runs overlaid on the results of four
alternative methods.  The SRBO method was applied using γ = 0.5 and r = 3, i.e., the last three runs are used for the
residual.   The  results  indicate  that  SRBO methods  converge  quickly  like  sequential  Kriging  optimization  (SKO)
methods.  Possible convergence issues are believed to relate  to the 100×100 grid used for expected improvement
optimization.  It is also possible that the convergence is limited by the constant γ, which explains why variations of γ
were conducted in our aerospace wing case study (Section B.3).  

Figure 3. Results from two randomly selected runs of each method on the six hump camel back function.  
(Vertical axis corresponds to the function value.  Horizontal axis corresponds to the number of 
function calls).
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2.  Multifidelity Test Problem  

The  application  of  the  augmented  dimensionality  variant  of  multifidelity  sequential  radial  basis  optimization
(MFSRBO)  to  Rosenbrock's  function  is  considered  next.   Similarly  to  Eldred  et  al.  (Ref. 38),  we  consider  the
minimization of Rosenbrock's function (Figure 4): 

 f HF = 100(x 2− x1
2)2 + (1− x 1)

2  (25)

f HF is the true (high-fidelity) function to be minimized.  Its low-fidelity surrogate f LF is defined as

f LF = 100(x2 − x1
2 + 0.2)2+ (0.8− x1)

2 (26)

Figure 4. Isocontours of the high-fidelity 
Rosenbrock function. 

Figure 5. Comparison between the Rosenbrock 
function and its low-fidelity counterpart in
the vicinity of their optima. 

Whereas the two functions have similar structure, the high-fidelity function has its minimum at (x1 = 1, x2 = 1), the low-
fidelity one at (x1 = 0.8, x2 = 0.44).  The two functions are not, in the strictest sense, weakly consistent, but the problem
has  favorable  structure.   In  the  immediate  vicinity  of  the  high-fidelity  optimum  f HF = 0  but  f LF ≈ 4  and  the
difference between the two models exhibits strong gradients, as illustrated in Figure 5.  

Because the methods described in Section IV  integrate data at all levels of fidelity to build a global radial basis
function metamodel, it is possible to use the associated Multifidelity Expected Improvement function (Eq. (17)) as the
criterion determining the location and fidelity level of subsequent evaluations:  

EI (x , k) ≝ E [max ( f̂ m(x*) − f̂ m(x ) − σm(x)ϵ ,0 ) ] .corr [ f̂ k (x ), ̂f m(x)] .(1−
σ̂ 0, k

√σ̂ k
2
(x )+ σ̂ 0 , k

2 ) .
Costm

Cost k
        (27)

where  ̂f m(x)  is the high-fidelity prediction at point  x , and  x*  is the current “effective best solution” defined in

Eq. (20).    σ̂ 0 , k
2  is the unexplained variance of the radial basis function model at level k , and σ̂ k

2(x)  is the variance

of f̂ k( x) .  The correlation term corr [ f̂ k (x) , f̂ m(x)]  is used to discount the expected improvement when an evaluation

from a lower fidelity surrogate is  used.  The term involving  σ̂ 0 , k
2  accounts  for diminishing returns of additional

replicates as the prediction becomes more accurate, and the cost ratio adjusts the sampling strategy according to the
evaluation costs (Ref. 16).  The location and fidelity of the next evaluation, xn+ 1  and kn+ 1  are given by maximizing

EI (x , k) , i.e.:

 (xn+ 1 , k n+ 1) = arg (max (EI (x , l))) (28)

The effective best solution x*  is defined by x* = arg (max (u (x)))  where u (x) = − ̂f m(x) − μ sm(x )  expresses the

willingness to trade one unit of the predicted objective for μ  units of the standard deviation of the prediction uncertainty
(Ref. 23).  Also, the expectation in EI (x , k)  is conditional given the past data and given estimates of the correlation

parameters.  Thus, the expectation is computed by integrating over the distribution of  ̂f m(x) , with  ̂f m(x*) fixed.

Specifically, assuming a normally distributed error, the probability of improvement P[ f̂ m(x) < f̂ m(x*)]  is given by  
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P[ f̂ m(x) < f̂ m(x*
)] =

1
sm(x)

∫
−∞

̂f m(x
*
)

ϕ( y− ̂f m(x) ; sm(x))dy   (29)

where ϕ  is the probability density function:

ϕ( y ;σ) =
1

√(2π)
exp(− y 2

2σ2 )   (30)

As pointed out in Ref. 9, the expected improvement is the first moment of Eq. (29), i.e.,

EI | f̂m( x) < ̂f m( x*
)
=

1
sm(x)

∫
−∞

̂f m(x
*
)

( ̂f m(x)−y) .ϕ(y− ̂f m(x) ; sm(x))dy   (31)

After integration by parts, the expectation can be calculated analytically as follows:

E [max ( f̂ m
(x* )− ̂f

m
(x ) ,0) ] = ( f̂ m

( x* )− f̂
m
( x )). ψ ( f̂ m

(x *)−f̂
m
(x ); s

m
( x ))

+                     s
m
( x ).ϕ ( f̂ m

(x *)−f̂
m
(x ); s

m
( x ))

  (32)

where  ϕ  is the normal probability density function defined above, and  ψ  is the normal cumulative distribution
function:  

ψ( y ;σ) =
1
2 [1 + erf ( y

√2σ )]   (33)

For the multifidelity Rosenbrock function, the initial design consisted of four points (the four corners in Figure 4), three
of which were chosen to be low-fidelity.  The fourth, high-fidelity corner was chosen randomly.  An assumed data point
uncertainty ( σ0  in Eq. (14)) of 0.01 was used.4  A typical optimization result is shown in Figure 6 which depicts the
search path history.  In Figure 6 the low-fidelity function evaluations are identified by the small symbols and the high-
fidelity ones with the larger symbols.  

Figure 6. Multifidelity search path and isocontours 
of the high-fidelity Rosenbrock function. 

Figure 7. Low-fidelity subset of multifidelity search 
path with isocontours of the low-fidelity 
Rosenbrock function. 

The optimization correctly identifies  the high-fidelity optimum in a relatively small  number of high-fidelity
function  evaluations.   For  reference,  Figure 7 shows  the  low-fidelity  subset  of  Figure 6,  super-imposed  on
isocontours of the low-fidelity function.  This picture helps understand the role of the low-fidelity evaluation as an
aid to sample the design landscape.  Note in particular the accumulation of points near the high-fidelity optimum
(x1 = 1, x2 = 1), and not the low-fidelity one (x1 = 0.8, x2 = 0.44).  

4 for purposes of comparison with the Branin function example considered in the previous section, this data point
uncertainty can be thought of as ~ N(0, 0.01) “virtual” noise
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In the results depicted in  Figures 6 and 7  the assumed cost ratio between the two fidelity levels was 3/2.  As
expected, the multifidelity expected improvement function drives the objective towards the high-fidelity optimum and
takes advantage of the presumed-low-cost, low-fidelity evaluations to find a positive direction of improvement.  The
approach is successful because the cumulative radial basis function metamodel is able to “learn” the relationship between
the low- and high-fidelity projections.  In an ideal sense, this nonlinear relationship must be accurately defined using as
few (expensive) high-fidelity observations as possible.  Our empirical observations suggest that, because the uncertainty
on this relationship remains large if the high-fidelity observations are too few, there is a practical tradeoff which must be
considered in the initial design.  For the majority of our experiments, the ratio of high-fidelity to low-fidelity initial count
was around 25%.  

To further demonstrate the method on a problem exhibiting more than one local optimum, we considered the
following dual optimum problem, constructed by smooth-symmetrizing the Rosenbrock function about the origin as
follows: 

 
h(x 1, x2)= η. f (x 1 , x2) + (1−η). f (−x1 ,−x2)

η =
1
2

( tanh [20(x1+ x2)]+ 1)
 (34)

In Eq. (34) f  designates either f HF  or f LF  as appropriate.  As in the previous example, the initial design consists of
the four corner points (x1 = ±2, x2 = ±2), only one of which is evaluated at the high-fidelity level.  

Figure 8 shows the multifidelity search path obtained by MFSRBO with an assumed 3/2 cost ratio and an assumed
σ0 = 0.01 .   As in Figure 6, the small symbols in the figure represent the results of low-fidelity analyses, and the large

symbols  correspond  to  high-fidelity  analyses.   It  is  noteworthy  that,  regardless  of  the  fidelity  at  which  they  are
calculated, the accumulated designs find both optima of the high-fidelity function, hHF .  

The convergence history is illustrated in Figure 9, which shows on a semi-log scale the values  hHF (x 1, x2)  of the
high-fidelity infills, in  their  order of appearance.  In order for the optimization to be able to both  explore the design
landscape and exploit the narrow minima, it is advantageous to relax the metamodel stiffness (i.e., increase γ  or γ i )
as the design progresses.  It its present implementation, this adaptivity is based on a simple, heuristic algorithm.  This
algorithm increases the γi  parameters by a small factor 

 γi
NEW = (1+ τ 1)γi

OLD  (35)
anytime the rank of the linear model design matrix X recedes below a given percentage of its full rank: 

 
rank (X )

n
≤ τ2  (36)

For example, the results of Figures 8 and 9 were obtained using τ1 = 0.11  and τ2 = 0.94 .  

Figure 8. Multifidelity search path superimposed 
with isocontours of the high-fidelity 
symmetrized Rosenbrock function. 

Figure 9. History of high-fidelity infills corres-
ponding to the mulitifidelity optimization 
search path shown in Figure 8.
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3.  Aeroelastic Wing Design Problem  

Two aeroelastic wing design problems were considered as part of this investigation.  The first, designated “baseline
problem,” consisted of an aspect ratio 10 unswept rectangular or slightly tapered wing designed for minimal drag under
load.  The second problem, referred to as the “UAV wing design,” was aimed at maximizing longitudinal aerodynamic
stability, and was characterized by the incorporation of multiple constraints and a noisy objective function.  

3.1  Baseline Problem  

A baseline problem was defined for the purpose of developing and demonstrating the MFSRBO approach and its
ability to represent and integrate information from each discipline and model.  Computational fluid dynamics (CFD) and
computational  structural  mechanics  (CSM) were initially targeted  as  examples of  high-fidelity models for  the two
interacting disciplines (fluids and structures).  However, the practical realities of time frame and budget focused our
attention instead on the following analysis methods and fidelity levels (see Section VI):  

Table 8.   Overview of computational methods used.
MODELS Fluids Structures

High
Fidelity

OPTMIS/MISDL, intermediate-level aerodynamic prediction code based on panel 
methods and other classical singularity methods enhanced with models for 
nonlinear vortical effects.  Applicable to subsonic and supersonic flight vehicles 
including aircraft, UAVs, missiles, and rockets.

CNEVAL FEM method; 
provides weights,  
displacements, stresses, and 
modal frequencies.

Low
Fidelity

Lifting line theory, supplemented with induced drag calculation.
Low degree-of-freedom version
of the CNEVAL FEM model.

An analysis of baseline problem candidates led to the selection of the minimum drag design of a wing subject to
minimum lift and static aeroelastic constraints as the focus of this demonstration.  This benchmark problem is derived
from Robinson et  al.  (Refs. 4, 5).   It  seeks  to  minimize  the  induced  drag  CD , i  by changing  the  pre-load  twist

distribution (parameterized here by the root chord angle of attack  α0  and its spanwise first and second derivatives,

dα/dy  and  d 2α/dy2 ).   Two additional  variables  are  introduced:  the  root  chord  maximum structural  thickness
θ0 ≝ TH(y = 0) ,  and the taper ratio  Λ ≝ ctip /croot  of the unswept flexible wing.  The wing span is maintained

constant, ymax = 5 ft , and the wing area is also kept fixed, at S = 5 ft 2 .  

Figure 10. Low- and high -fidelity static aeroelastic deformation prediction.  (Top: aerodynamic 
loading (planform view).  Bottom: streamwise view of combined wing twist and bending 
(not to scale)).
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The induced drag was minimized, subject to minimum lift and maximum stress constraints as follows:

minimize 
{α0 , dα/dy ,θ0 , Λ}

C
D ,i

subject to C
L
≥ (W

payload
+W

wing
)/(q

∞
S

ref
)

σ
VM

/ σ
VM ,max

< 0.5

(37)

where σVM  is the von Mises stress, W  is weight, q∞  is dynamic pressure, and S ref  is the wing reference area.  For

this investigation, the freestream angle of attack is zero, the freestream Mach number is  M∞ = 0.2 ,  the dynamic

pressure is q
∞
= 40.76 psf , and the assumed payload is W payload = 75 lbs .  

A  typical  comparison  of  low-  and  high-fidelity  analyses5 is  given  in  Figure 10,6 corresponding  to  α0 = 7o ,

dα/dy =−0.8o ft−1 ,  d2α/dy2 = 0o ft−2 ,  θ0 = 0.045 ft ,  and  Λ = 0.8  using  the  material  and  cross-sectional
properties shown in Section VI.   

One-, two-, three-, and four-dimensional variations on the minimum drag aeroelastic wing design problem were
investigated as part of this effort.  To better understand how the optimization method performed on these cases, let us
consider the two-dimensional results (Table 7, subcase 2) in which a fixed root chord maximum thickness θ0 = 0.04 ft

and fixed taper ratio Λ = 1  are used.  

Figure 11. Sample multifidelity search path for two-
dimensional aeroelastic wing design 
problem.

Figure 12. A different instantiation of the problem 
solved in Figure 11 (different initial 
conditions).

Figures 11 and 12  provide two examples of the MFSRBO search path when the optimization is initiated from two
randomly chosen  Latin  Hypercube  design  of  experiments,  each  including  one  high-fidelity  and  three  low-fidelity
solutions (see Table 9).  

Table 9.  Listing of initial conditions

Point 
Number

Initial Design Used in Figure 11 Initial Design Used in Figure 12

α0 (
o
) dα/ds (o

) Fidelity level α0 (
o
) dα/ds (o

) Fidelity level

1 8.405 -2.453 Low 3.021 -9.752 High

2 0.784 -4.876 Low 7.487 -1.617 Low

3 4.690 -6.679 High 9.019 -6.821 Low

4 5.851 -8.127 Low 0.934 -3.438 Low

5 The cost ratio between high- and low-fidelity analyses was 5:1
6 “σ” in Figure 10 denotes the ratio VM / VM , max
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The following computational analysis uncertainties ( σ0  in Eq. (14)) were used uniformly for the OPTMIS outputs: 

Table 10.  OPTMIS output uncertainties
CL CD,i Wwing (lb) σVM/σVM,max

σ0 0.0002 0.002 0.03 0.02

The results of Figures 11 and 12 are shown as a function of the two design variables α0  and dα/ds , where s  is the

nondimensional  span  variable,  s = y / ymax .   The  background  contour  lines  represent  the  high-fidelity  primary

(unconstrained) objective, CD , i .  The large symbols denote high-fidelity analyses, whereas the small symbols represent

the low-fidelity analyses.  Each symbol is colored based on the objective function, which is the induced drag  CD , i ,
modified  with penalty functions for  violating lift  and/or  stress  constraints  (themselves  indicated  by dashed  lines).
Specifically, the constraints are incorporated into the objective function using the following penalty formulation (using
the previously quoted values for W

payload , q
∞  and S

ref ):  

f = C
D , i

+ 10 .max [(75+ W wing

40.76 ×5 )−C
L

, 0] + 20 . max[ σVM

σ
VM , max

− 0.5 , 0]   (38)

where W
wing  is the structural weight of the wing, expressed in pounds.  The process of maximizing the multifidelity

expected improvement function (17) involves calculating (21), which requires keeping track of the current best effective
solution x*= [α0

* ,(dα/dy)* ,θ0
*,Λ* ] , and the ability to estimate the objective function f  and its variance s2  at any

design point x  for any level of fidelity.  

Figure 13. Quantification of multifidelity vs. high-fidelity-only optimization performance via aggregated 
cumulative distribution functions.  The primary objective, CD,i is shown on the horizontal axis. 
The vertical axis is the numerically computed probability of finding feasible high-fidelity 
solutions meeting the target on the x axis.
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A more elegant  way of handling the constraints in a consistent  and fully probabilistic  manner is  described in
Forrester et al. (Ref. 9).  The detailed implementation of this method applied to the present problem is described in
Ref. 33. 

Statistical Results
It is important to realize that, due to the inherent coupling between the optimization path and the sequential radial

basis function metamodel being created at the various stages  of the optimization, the results depend on the initial
conditions of the optimization (this is true whether one uses multifidelity or single fidelity optimization).  Figure 12, for
example, presents a different data profile for the same nominal problem as  Figure 11, the only difference being the
initial conditions.  

For this reason, when comparing performance metrics, it is particularly important to collect multiple results such as
Figures 11 and 12 and to consider ensembles in a statistical sense in order to draw meaningful conclusions.  Thus, using
multiple realizations with random initial conditions based on a Latin Hypercube design of experiments, optimization
results were aggregated and analyzed as a group.  When comparing multifidelity vs. high-fidelity-only optimization, care
must also be exercised so that the exact same design variables are used in the initial design.  

The details of this aggregate analysis are as follows.  The candidate designs harvested as a result of each optimization
are first filtered so that only the high-fidelity (HF) solutions that do not violate the constraints are considered. 7  These HF
nonviolators are then sorted based on the primary objective (low CD , i  in the present case).  Aggregate performance
profiles collected in this manner can then be analyzed in terms of the induced drag cumulative distribution function
(CDF) of the wing designs.  The example shown in Figure 13 corresponds to 8 realizations of the three-dimensional
optimization (Table 7  subcase 3).   The stopping criterion was based either  on failure to improve the EI function
(Eq. (17)), or reaching a self-imposed computational budget consisting of a maximum of 24 high-fidelity evaluations.
The optimal designs for this case (i.e., Table 7 subcase 3) are given in the table below:

Method α0 (
o
) dα/dy (o ft−1) θ0 ( ft ) CL CD, i W wing (lbs) σVM

MFSRBO 6.624 -0.704 0.0392 0.4624 6.484 x 10-3 18.87 0.442
HF-only 6.418 -0.603 0.0384 0.4643 6.542 x 10-3 18.64 0.471

Figure 13 shows that, by using multifidelity optimization, there is, for example, a 37% probability of achieving a drag
coefficient less than 0.01, versus less than 4% with high-fidelity optimization only.  Thus, for a given computational
budget, there is an order of magnitude greater probability of finding/approaching the high-fidelity optimum by using
multifidelity optimization.    

    Neglecting, for the sake of simplicity, the cost of
the  low-fidelity  analyses  and  the  cost  of  the
optimization calculations per se, the average ratio of
the  cumulative  distribution  functions  provides  an
indication  of  the  relative  performance  of  these
methods.  Let us define the CDF area ratio as the ratio
between the areas under the CDF curves (Figure 13)
for CD , i ≤ 0.01 .  
    Figure 14 shows the CDF area ratio as a function
of the search space dimensionality of the problem.
The three- and four-dimensional cases are believed to
be more typical  of the expected performance ratio.
Our observations suggest that the replicate-deterrent
term  (α2 in  Eq. (19)),  may have  had  an  important
effect in the lower dimensional experiments, due to
the  effectively  higher  point  density  in  those  cases.
The one-dimensional case was obtained by varying
α0

 only.   (The  so-called  “1.5-dimensional”  case

represents a case where the constraints were such that
only a narrow sliver of feasible solutions existed in
the  nominally  2-D  space,  thus  making  the  space
effectively quasi-one-dimensional).  Although limited

in scope and strictly empirical,  the results of  Figure 14 suggest  the possibility that the MFSRBO method may be
increasingly beneficial as the dimensionality of the problem increases, although this question will be left for future
research.  

7 In this study, this was typically repeated for 8 to 16 realizations.
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3.2  UAV Wing Design  

The baseline problem described above was extended to the case of  an aeroelastic  swept  (UAV-type)  wing at
M∞ = 0.2 .  The wing planform is a modified version of the European  SACCON stability and control vehicle8 with

identical span and wing area.  As in Table 7 subcase 2 above, the design variables are the pre-load twist distribution
parameters,  α0  and  dα/ds .  However, this time, the design objective is to maximize  longitudinal pitch stability,

−dC m /dα , subject to minimum lift, maximum stress, and trim/controllability constraints, as follows:

minimize 
{α0 , dα/dy }

dC m/dα

subject to C
L
≥ (W

payload
+ W

wing
)/(q

∞
S

ref
)

σ
VM

/ σ
VM ,max

< 0.55

∣Cm∣< 0.002

(39)

where Cm  is the pitching moment about the root half chord location.  
An  example  comparison  of  low-  and  high-fidelity  results  obtained  using  OPTMIS  is  shown  in  Figure 15,9

corresponding to α0 = 18.5o ,  dα/dy =−4.3o ft−1  and W payload = 75 lbs  for an isotropic material with self-similar

cross-section (see Section VI) and a spanwise-uniform maximum thickness of θ0 = 0.025 ft .  

Figure 15. Low- and high-fidelity static aeroelastic deformation of UAV wing.  
(Left: planform view of loading.  Right: perspective view of wing twist 
and bending (not to scale)).

The optimization methods and postprocessing metrics were identical to those described in Section 3.1.  Figure 16
provides an illustration of the multifidelity sequential radial basis optimization search path for a given instance of a Latin
Hypercube design of experiments including one high-fidelity and three low-fidelity solutions as the initial conditions.
The flooded contours represent the primary objective, dC m/dα , which is noisy, due in part to finite differencing and to

Cm  being itself a sensitive quantity.  As before, the large symbols denote high-fidelity analyses, whereas small symbols
are used for low fidelity.  Each symbol is colored based on the objective function, which is the stability derivative
dC m/dα , augmented with penalty functions for violating either the lift, trim, or stress constraints.  Specifically, the

8 NATO RTO, AVT-161 Assessment of Stability and Control Prediction Methods for NATO Air & Sea Vehicles. 
9 “σ” in Figure 15 denotes the ratio VM / VM , max
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constraints are incorporated in the objective function using the following penalty formulation (using the previously
quoted values for W

payload , q
∞ , and S

ref
= 4.15 ft 2

): 

f =
dCm

dα
+ 10 . max [∣Cm∣−0.002 , 0 ]

+ 10 . max [(75+ W wing

40.76 ×4.15 )− C
L

,0 ]
+ 20 . max [σVM

σVM ,max
− 0.5 , 0]

  (40)

where W
wing  is the structural weight of the wing, expressed in pounds.  

Figure 16.   Sample multifidelity search path for UAV aeroelastic wing design problem.

Aggregate cumulative distribution functions for the multifidelity and high-fidelity-only optimizations were determined
for this problem, in a manner similar to Figure 13.  The resulting CDF area ratio, defined as the ratio between the areas
under the CDF curves for dC m / dα ≤−0.0027 , suggests 4:1 odds in favor of multifidelity optimization, as indicated
in Figure 14.  

VIII. Concluding Remarks / Discussion
This paper has explored the use of radial basis functions rather than Kriging models in sequential multifidelity

optimization.  In  adapting the methods, we have addressed at  least  three types of unavoidable challenges relating
prediction, error estimation, and the expected improvement function.  This investigation explored proposing two types of
metamodeling approaches which are (a) cascading (the most direct extension of Kriging-based methods with convergent
prediction) and (b) augmented dimensionality (which offers advantages for data starved cases). 

Perhaps  the  greatest  challenge  was  developing  a  comprehensive  estimate  of  uncertainty  corresponding  to  the
approximate Bayesian intervals for Kriging functions.  They are approximate because they are based on parameter
estimates.  Here, four types of approaches were considered with numerical results based on assumed errors and simple
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cross-validation.  Finally, two alternative formulations for the expected improvement function were described because of
the computational challenge of estimating correlation for the radial basis function case.  

The preliminary numerical results indicate that methods based on radial basis functions can compete with Kriging
methods in relation to efficiently and repeatedly identifying global optimal solutions.  Based on the numerical testing
conducted thus far, the advantages and disadvantages of the proposed radial basis function approach can be summarized
as follows:  

Reduced computational overhead – Radial basis function estimation does not require likelihood minimization
since a closed form is used for the coefficient estimates.  By contrast, thorough and accurate likelihood optimization
is a difficult computational challenge.  The efficiency increase realized by eliminating one of the two optimizations
per iteration (the other being the expected improvement optimization) can enable many new applications of related
methods.  These include “on-line” or automatic optimal decision-making.  For example, data can stream in from
sensors  or  simulations  running  in  parallel,  and  can  be  quickly integrated  for  determining  optimal  settings  and
requests for additional inputs. 

Improved numerical stability – In contrast to prior computational work (e.g., Huang, Allen, Notz, and Miller 
(Ref. 16)), radial basis function fitting is based on linear model estimation which is very stable.  

Error estimation including bias – The errors used in the proposed MFSRBO are based on regression variance
errors only.  This makes their interpretation difficult in deterministic cases, i.e., cases with perfect repeatability error or
σ = 0.  In such cases, the intervals do not directly correspond to any interpretable physical quantity in the corresponding
problem and performance of the methods likely is degraded.  Developing new methods based on measures of bias such
as the diagnostics proposed in Tseng (Ref. 28) may constitute a promising avenue of research.  

Measuring computational overhead – It is clear that linear model estimation is computationally superior to
likelihood estimation in Kriging models.  Yet, so far we have not measured the computational advantages.  Also, we
have not tuned the methods to the point at which the overhead is minimal and comparable to standard nonlinear
programming  methods.   The  promising  results  from the  radial  basis  function  methods  here  suggest  that  such
performance is achievable.  

Parallelizing  the  methods –  One promising area  is  the  possibility  of  parallelizing function evaluations.   For
example,  it  is  advantageous  to  launch  one  slow,  high-fidelity  simulation  simultaneous  with  several  low-fidelity
simulations. The structure of these methods lends itself nicely to parallel processing with its significant computational
advantages.  
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