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ABSTRACT

The present paper describes a new tool kit which can
be used to model the time-dependent response of
nonlinear systems.  The Indicial Prediction System
(IPS) applies nonlinear indicial theory to solve
complex unsteady problems, such as those associated
with nonlinear aerodynamic phenomena during
maneuver of aircraft.  The functionality of this system
and its capabilities are described through numerous
examples.  An important demonstration of the method
is its application to the prediction of the aerodynamic
loads on a 65-degree delta wing undergoing forced
body-axis rolling motions at high angles of attack.

NOMENCLATURE

Symbols and abbreviations

b Wing span
c Wing chord
C Body-axis rolling moment coefficient,l

nondimensionalized with respect to qSb
CS Critical State
CSR Critical-state Response
DEP Dependent variable
DOF Degree of Freedom
f Aerodynamic load (generic)
f Frequency
f Indicial response of f with respect to --

Indicial response of f
Deficiency function ( )

H Heaviside step function
IE Indicial Extraction
IP Indicial Prediction
IPS Indicial Prediction System
IR Indicial Response
k Reduced frequency  (k ≡ 3b/2U )∞

n Number of retained harmonicsharm

NIR Nonlinear indicial response
N Number of nodal extraction roll angles-

p Roll rate
q Dynamic pressure
QS Quasistatic
rms Root mean square
S Wing area
sgn Sign
t Time
T Period of oscillation
U Freestream velocity∞
� Angle of attack
	 Dirac delta function
	C /	- Indicial response of rolling moment withl

respect to roll angle
�f Build-up of generic aerodynamic load, f
�f Critical-state response of fCS

� Boundary condition (generic)
- Roll angle
% Support sting angle
) Time constant; alternatively, auxiliary time

integration variable in integrals
) Time at which critical state is crossedc

3 Angular frequency



(1)

Parameter denoting dependence on prior combines features of flexibility in modeling, good
motion history execution speed, and high fidelity representation.

(t) Basis function

Subscripts 2.  OBJECTIVE AND APPROACH
c Critical
CS Critical State
DR Deficiency Response
dyn Dynamic
QS Quasistatic
∞ Time-asymptotic value (except for U )∞

Superscripts

CS Critical State
dyn Dynamic component
v Vortical
" Derivative with respect to time
"" Second derivative with respect to time
~ Indicial or deficiency function

1.  INTRODUCTION

In recent years, it has been possible to integrate the
flight-dynamics equations fairly efficiently using
linearized aerodynamics which are occasionally
supplemented with ad hoc methods (i.e.,
semiempirical simulations or wind tunnel data) to
include nonlinear unsteady aerodynamic effects.
However, with the expanded flight envelopes being
considered for future maneuvering aircraft, it has
become increasingly important to be able to model
and predict nonlinear, unsteady aerodynamics.  This
includes the prediction of the aerodynamic response
in the presence of flow separation, shock movement,
and vortex bursting at high angles of attack and/or
high angular rates.  

Future fighter aircraft will be required to perform
controlled maneuvers well beyond traditional aircraft
limits, for example, pitch up and flight at high angles
of attack, rapid point-to-shoot, and other close-in
combat maneuvers.  These advanced maneuvers
demand the use of aerodynamic methods capable of
predicting characteristics of the nonlinear post-stall
regime for multiaxis motions at extremely high rates.
At present, the only methods of this scope are Navier-
Stokes methods.  However, their use in flight
simulations remains impractical at this time.  

One method which has the potential to circumvent
some of the present difficulties is the application of
nonlinear indicial theory [1,2].  An example of the
latter (the Indicial Prediction System described herein)

The objective of this paper is to provide an overall
description of the Indicial Prediction System, with an
emphasis on its use as a tool box for the
aerodynamicist and control system designer.  This
paper is organized as follows.  First, a brief
theoretical background is given.  This is followed by
an overview of the system, including the basic
algorithms and examples illustrating some of the
current capabilities.  Code validation results are then
presented.  Finally, the complete system is applied to
a subset of the U.S. Air Force Research Laboratory
(formerly USAF/WL) and Canadian Institute for
Aerospace Research (IAR) 65−degree delta wing
database.

3.  INDICIAL THEORY

The indicial approach is based on the concept that a
characteristic flow variable , which describes the
state of the flow, can be linearized with respect to its
boundary condition (or forcing function), �(t), if the
variation of  is a smooth function of �(t).  This
allows the representation of  in a Taylor series
about some value � = � ; thus0 

If the response depends only on the elapsed
time from the perturbation �� (a linear time-invariant
response) then it may be shown [3] that the formal
solution for  is

 where .

Hence, if the forcing function (i.e., the boundary
condition �) is known and if  (the indicial response)
is known from some computation or experiment, then
Eq. (1) gives the value of  for any schedule of
the boundary condition �(t) without the need to
compute  from first principles.
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Fig. 1. The IE and IP Programs Share Common
Module Components.

 
The basic idea behind the use of nonlinear indicial
response theory [1,2] is that the linear formalism,
Eq. (1), can be retained in the form of a generalized
superposition integral, provided that the nonlinear
indicial response  is now taken to be a functional

( ;t,)), where  denotes the dependence on
the entire prior motion history.  Furthermore, the
nonlinear indicial theoretical formulation allows for
the presence of aerodynamic bifurcations by splitting
the integral, for example:

where the nonlinear indicial function  is
defined as the following Fréchet derivative:

and �f (t;�() )) is the so-called jump responseCS
c

associated with crossing the bifurcation at time ) .c 

A critical state is defined [4] as a transition from one
equilibrium flow state to another and is often
associated with a discontinuity in the static
aerodynamic loads and/or their derivatives [5].  The
associated transient response, �f (t ;�() )), isCS 

 c

referred to either as the critical-state response (CSR)
or the jump response. the a priori independent variables and to specify

4.  INDICIAL PREDICTION SYSTEM that pitch-plane-only maneuvers are being considered.

The Indicial Prediction System is essentially the union freedom) of the independent variables as time-
of two codes: an indicial prediction (IP) code and an dependent.  The motion source specification allows
indicial extraction (IE) code.  The indicial prediction the program to identify the source of the motion as
code uses a database of indicial and critical-state being a file (tabular form) or a shared object
responses to predict the output of the system to more subroutine. 
or less arbitrary inputs, while the indicial extraction
code is responsible for the creation of this database The modeling options module allows the user to 
from empirical data.  Both modules are based on the experiment with various parameterizations of the
concept of a nodal, parameterized representation of indicial and critical-state responses.  In some cases,
the nonlinear indicial response (References 6 and 7). this may even include the possibility that the desired

The overall structure of the IPS is given in Figure 1.
This figure depicts the main components of the
system, many of which are shared between the IE and
IP modules.  We will now briefly describe the
functionality of each of the components.

The purpose of the space definition module is to
define all possible dependent and independent
variables for a given configuration or subcase of a
given configuration.  A configuration file is parsed for
these variables, along with static (descriptive)
parameters such as flow conditions and geometry.
The configuration file also contains IR/CSR database
information as well as textual information such as title
and comment fields.

The path/maneuver definition module has two
primary purposes: specification of inputs and, in the
extraction case, specification of the “training” data
used to identify the IR/CSR database.  The inputs
specification serves to optionally deactivate some of

bounds on the retained variables.  For instance, in a
six degree-of-freedom simulation, one may specify

This identifies a subset (the active degrees of

parameterizations are not strictly consistent with the



Fig. 2. Schematic Depicting the Relationship
Between Parameters, Active Degrees of
Freedom, Active Dependent Variables and the
a priori Dependent and Independent Variables
of the System.

Fig. 3. Two-Dimensional Illustration of IR/CSR
Space Partition.

nominal parameterization expressed in the IR/CSR described either in tabular form or subroutine form.
database (see below).  "Modeling" in this context is If its form is not specified, then the deficiency
defined as a series of decisions made by the user response is taken to be zero, meaning that the
which include the choice of the dependent variables response is quasistatic.
to be predicted (DEP ), the choice of which activei

degrees of freedom (DOF ) affect each of these The purpose of the IR/CSR conditioner is twofold.j

dependent variables individually, and, for each of the Its first function is to filter the contents of the
retained (DEP , DOF ) combinations, how to calculate IR/CSR database in order to establish a short list ofi j

the contributions due to the indicial (IR ) and critical- IR/CSR nodes "likely" to participate in theij

state responses (CSR ).  In particular, each IR  or interpolation process.   Its second function, in the IPij ij

CSR  may be treated/overridden as quasistatic rather mode, is to resolve parameterization conflicts, thusij

than dynamic, and each IR /CSR  may be maintaining the user's ability to execute the programij ij

parameterized in different ways (see Figure 2). even in cases where the contents of the IR/CSR

The IR/CSR database consists of a number of files
containing information relative to the known indicial
and critical-state responses.  Each IR or CSR file
represents one or more nodal responses.  Each file
contains a header, followed by a data description.
The data description consists of a list of dependent
variables, one independent variable, and a list of
parameters pertaining to this particular node.  For
example, the file might describe the nonlinear indicial
response of C  and C  (two dependent variables) withl m

respect to - (the independent variable), at - = 15°
(first parameter), d-/dt = -0.01 (second parameter),
% = 30° (third parameter) and sgn(d -/dt ) > 0 (fourth2 2

parameter).  The responses per se are specified in two
parts.  The first item is the time-asymptotic or
quasistatic value of the response (i.e., the
aerodynamic derivative for each of the dependent
variables).  The second item is a description of the
deficiency responses for each dependent variable (the
deficiency response is the indicial response minus its
time-asymptotic value).  A deficiency response can be

database are not strictly consistent with the desired
parameterizations being experimented with.  This also
allows the handling of heterogeneous databases.  For
example, it is conceivable that the IR/CSR database
may have been created initially with certain
parameterizations in mind, but then modified through
the addition of extra responses with different (either
fewer or more) parameterizations.  In this case, the
IR/CSR conditioner permits the program to function
without having to regenerate the entire database.

At the end of the IR/CSR conditioner tasks, the useful
portion of the database has been ingested and
homogenized.  One task remains to complete the
modeling decisions: the definition of partitions of the
IR space and the assignment of critical states.  The
tasks carried out in the modeling options module
define the representation of the IR/CSR parameter
space and its dimensionality.  The Partition
Definition Module creates partitions of the parameter
space.  The purpose of partitioning is to carve out



Fig. 4. Classification of Parameter Space Partitions
as Critical States.

sections of the parameter space within which like-
nodes are considered for functional interpolation (see
Figure 3).  Partition transitions are then classified
according to whether or not they are to be modeled as
critical states (Figure 4).

The Prediction Module and the Extraction Module
are the core computational modules of the Indicial
Prediction System.  The task of extracting nonlinear
indicial and critical-state responses from experimental
data is a challenging one, and a separate paper
(Reference 8) will be devoted to this topic.  The
prediction module is responsible for carrying out the
nonlinear indicial theoretical prediction.  Thus, it is
responsible for integrating (in a generalized sense) the
indicial and critical state contributions.  The basic
algorithm in the prediction module is as follows.  For
each dependent variable DEP , the predicted responsei 

is the sum of the effects of each participating active
degree of freedom.  Each of these effects are
separated into so-called regular contributions (due to
the indicial responses), and critical state contributions.
Each contribution is further subdivided into quasistatic
and dynamic components.   The integration is done in
two steps.  The first step is the integration of the
regular contributions.  The update of each dependent
variable is symbolically denoted

where DR stands for the deficiency response
(DR ≡ IR−IR ).  The second step is to sum up allQS

relevant critical-state response contributions.  Again,
the update of each computed dependent variable is
symbolically denoted

where CSR  designates the deficiency (i.e., dynamic)DR

portion of the critical-state response.  Both the regular
contributions and critical-state contributions are stored
at each time step for each valid DEP /DOFi j

combination.

5.  SAMPLE CASES

In this section, we present the results of four example
runs illustrating the capabilities of the IP code.  The
first example exercises the code in linear indicial
theoretical mode.  The second example illustrates the
effect of interpolation accuracy for the case of a
nonlinear quasistatic prediction involving two degrees
of freedom.  The third example illustrates the effect
of partitioning without any critical states.  The last
example models hysteresis with two critical states.

Linear Indicial Response

A single input, single output, linear model was
constructed using a single indicial response node.
The indicial response is of simple exponential form

, so that the response f(t) to an input
 is known analytically.  Figure 5 shows

the result of the IP code, run with the periodic option.
The results (DEP (t)) are plotted as a function of the1

damping ratio )/T, where T is the period of the
excitation.  According to theory, the amplitude and
phase shift of the output are those given in the
following table:
 

Ratio )/T Amplitude Phase

0 4  0°

0.125 3.146 -38.1°

0.25 2.149 -57.5°

0.5 1.214 -72.3°

1 0.629 -81.0°

 
The results shown in Figure 5 are exact to numerical
accuracy.

Nonlinear Quasistatic Response

In this example, there are two degrees of freedom,
denoted �  and -.  However, we assume that the
dependent variable denoted DEP  is a function of �1

only.  The indicial response of DEP  with respect to1

� is assumed to be parameterized by both � and -,
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  Fig. 6. Example #2: Nodal Responses and
Maneuver Trajectory in � - - Parameter
Space.

Fig. 7. Quasistatic Quadratic Prediction of DEP  vs.1

DOF = �: Comparison Between 2-D and 1-D
Interpolation Schemes.

however.  The maneuver consists simultaneously of a required to achieve the same node density as in the
hyperbolic tangent-shaped ramp in � and an one-dimensional case.  This illustrates the fact that
impulsive constant roll rate for -.  Its trajectory (in reduced parameterization should be used whenever
� -  - parameter space) is shown in Figure 6, along possible.
with the location of the six nodal indicial responses
used (three at - = 0 and three at - = 50).  In this
exercise, the deficiency responses are all assumed to
be zero (quasistatic prediction).

In general, it is difficult to make comparisons against
exact solutions in the nonlinear case (i.e., the case
where the indicial response varies along the dependent variable, denoted DEP .  The indicial
trajectory).  In some particular cases, however, it is response of DEP  with respect to DOF  is assumed to
possible to obtain such solutions analytically.  One
example considered here is when the value of the
indicial response is proportional to  �.  In this case,
Eq. (2) amounts simply to an integral of the product

.  With a zero initial condition, the result must
then be proportional to � , regardless of the details of2

the path.  This is indeed verified, and is illustrated by

the results of Figure 7.  Additionally, Figure 7
compares the relative accuracies of two interpolation
schemes.  The first one (curve labeled ‘2d.xg’)
corresponds to the full two-dimensional interpolation
in � -  - parameter space using Shepard quadratic
interpolation.  The second scheme (‘1d.xg’)  is the
result of projecting all nodes on the � axis (a
permissible modeling option, since the indicial
responses are, by construction, not a function of -).
In the latter case, the one-dimensional interpolation is
carried out using a cubic spline.  The result of the
one-dimensional interpolation is seen to be slightly
more accurate than the full two-dimensional
parameterization/interpolation.  Since both
interpolation schemes are capable of representing
quadratic behavior exactly, the difference in accuracy
is due to the node sparseness factor, i.e., the fact that,
in two dimensions, on the order of 6  nodes are2

IR Space Partitioning

We now consider a case where the indicial response
space is partitioned.  The hypothetical system has a
single degree of freedom DOF  = � and a single1

1

1 1

be parameterized by  and sgn( ), and there are no
critical states.  The location of the available nodal
indicial responses is indicated in Figure 8.  It is
assumed that the IR space has two partitions: one
corresponding to � < 35, and the other corresponding
to � > 35.  For simplicity of interpretation, all nodes
in a given partition are chosen to be identical to each
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other.  For � < 35, they are given by , the partition.  In other words, )  = ) .  The resulting
while for � > 35, they are given by . prediction, for )3 ≈ 0.785, is shown in Figure 9
In each case, the excitation �(t) is assumed to be (curve labelled ‘const_DR.xg’).  If, on the other hand,
sinusoidal: �(t) = 40 + 40 sin(3t). )  is reduced by a factor of approximately 30, so that 

Let us first consider the “fast response” limit () , example, in the case where )  = ) , the T/) ratio1

)  → 0, or ).  In this case, one would exceeds eight.  It can be argued, therefore, that most2

expect DEP (�) to collapse onto a single curve made (> 85%) unsteady effects caused by the previous1

of two linear segments, characterized by partition are “forgotten” by the time the trajectory
d(DEP )/d� = 1 for � < 35, and d(DEP )/d� = 2 for reaches the end lobes, since these are reached1 1

� > 35.  This corresponds to the curve labelled approximately two time constants after crossing the
‘two_part.xg’ in Figure 9.  By contrast, note that, if partition.  For )3 ≈ 0.785, theory predicts that the
the partition is removed so that all nodes are amplitude of the output is approximately 80% of its
considered together in the interpolation process, there
is a gradual blending of the IRs, as demonstrated by
the curve ‘single_part.xg.’

Consider now the case of an unsteady prediction,
where the deficiency responses (once normalized by
the quasistatic IR value) are identical on both sides of

1 2

2

)3 ≈ 0.025 for the right-hand side partition (� > 35),
then the result labelled ‘var_DR.xg’ is obtained.  In
both cases, the loops are traveled in the counter-
clockwise direction.  Note, in particular, that the
‘var_DG.xg’ prediction does not immediately join the
quasistatic curve, since there are memory effects
associated with the trajectory having previously
visited the left-hand side partition, where strong
dynamic effects were present.

As previously mentioned, it is difficult, in the
unsteady nonlinear case, to compare the predictions
against analytical solutions.  However, it is possible
to infer analytical characteristics by reasoning on the
invidual lobes of the dynamic hysteresis curves.  For

1 2

quasistatic counterpart.  Theory also predicts that the
angle of the ellipse will tilt by -23% in the left-hand
side partition, while for the right-hand side partition,
the angle tilts down by less than 5%.  The resulting
nonlinear ‘folding’ is indeed observed in the figure.
The thickness of the ellipses is predicted to be
around 27%.  Actual thicknesses (as inferred from
measurements made at the half major axis location)
are around 24%.

Critical State Hysteresis

In this example, we reproduce with the IP code one
of the results published in Reference 9.  An
artificially constructed nonlinear system was designed
to mimic the rolling moment coefficient response of
the 65° delta wing undergoing forced roll oscillations.
In Reference 9 we considered small amplitude
oscillations in the range of − 4° ≤ - ≤ 8°, for a 

support sting angle of 30° and at a freestream Mach
number of three-tenths.  Static data taken at fine roll
increments [5,10] suggest the existence of critical
state transitions at - = 5.20° and - = 4.67° for
increasing and decreasing -, respectively.

The real data were idealized using a nonlinear indicial
model (described below), and it is this idealized
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model which we consider here.  The model is a single For example, the quasistatic and dynamic components
input, single output, model.  The indicial responses of the prediction are indicated in Figure 10.  Note
are parameterized by - (the degree of freedom) only, that the dynamic component includes both the IR and
with nodal indicial responses defined at - = − 4°, CSR deficiency response contributions.  A more 

−1.3°, 1.6°, 4.6°, 5.3°, and 8.6°.  In addition, two detailed analysis reveals that, at the relatively high
jump responses are defined at the crossing of critical frequency of the excitation, the net build-up due to
states, i.e., at -  = 5.2° for d-/dt > 0, and at jump responses is relatively small, due to aCS

-  = 4.7° for d-/dt < 0.  The various time constants cancellation effect between consecutive critical states.CS

were chosen so as to qualitatively reproduce some of Both prediction methods assume a piecewise linear
the actual hysteresis loops recorded in this roll angle interpolation between the indicial responses.  There
range [9].  The indicial and critical-state responses are, however, differences in the quadrature method
contained in the database are as follows: used for time integration.
 
- Type Expression

  -4 IR  2.5 − 3.5 exp(−t/1.2) 

-1.3 IR -0.5 − 0.5 exp(−t/0.4) 

1.6 IR -0.5 − 0.5 exp(−t/0.4) 

4.6 IR  1.3529 − 2.3529 exp(−t/0.4) 

5.3 IR  1.6 − 2.3833 exp(−t/0.4) − 0.2167 exp(−t/0.6)  

8.6 IR  1.6 − 2.6 exp(−t/0.6) 

4.7 CSR -2.5 + 12.5 exp(−t) −10 exp(−t/0.76) 
 

5.2 CSR  2.5 − 12.5 exp(−t) +10 exp(−t/0.76) 
 

In Reference 9, the result of extracted indicial and
critical-state responses was used to predict the
hysteresis loops associated with various novel
maneuvers.  The one considered here is
- = 2 + 8 sin(3t), with 3 = 2.0.  This corresponds to 

the prediction labeled ‘k = 0.0267' in Fig. 18 of
Reference 9.  This previous prediction is shown in

Figure 10, where it is compared to the prediction
made using the IP code (curve labeled ‘TOTAL’).  In
addition, the output of the code allows the
examination of the various prediction components.

6.  ALGORITHM CAPABILITIES

The core computational engines of the indicial
prediction module consist of quadrature and
interpolation operations.  For a given set of modeling
decisions (parameterizations) and a given database
density, the quadrature and interpolation operations
directly affect the accuracy of the prediction.  It is
important, therefore, to discuss the various options
available.  Each engine is implemented in shared
object form and, thus, is external to the program,
allowing IPS’s versatility to continually improve, as
shared objects are added on.

At present, the quadrature shared objects include the
following: midpoint rule integration, adaptive
trapezoidal integration, adaptive Simpson integration,
a high-order adaptive integration method, and a Dirac
integration method by midpoint rule.  The latter
allows the IPS to be used when the inputs are
discontinuous in time (thus generating Dirac deltas in
the integrand of the convolution integrals), such as
with square wave or step inputs.

The interpolation shared objects are categorized
according to dimensionality and whether the
interpolation method is restricted to ordered data on
a lattice or functions on scattered nodes.  The present
interpolation capabilities include, in one dimension,
piecewise linear interpolation as well as a variety of
univariate splines (natural, FMM, shape-preserving,
improved Akima, and Nielson).  For bivariate
interpolation, five different interpolators are provided:
four scattered data interpolators, and one sorted node
interpolator.  The bivariate scattered data interpolators
include: modified Shepard quadratic, SrfPack linear,
SrfPack nonlinear, and Akima bivariate cubic.  The
sorted data algorithm is a bivariate bicubic
interpolator.  A trivariate scattered data interpolator
will be made available for three-dimensional
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interpolation in the near future.  In addition, an ‘TOTAL’), as well as the individual contributions due
arbitrary-dimensional scattered data interpolation to the regular (convolution integral) contributions
based on reciprocal multiquadrics has also been (‘IRTOT’) and the jump (critical-state) response
implemented. contributions, labeled ‘CSRTOT’.

Together, these capabilities provide the Indicial
Prediction System with a wide range of modeling
options.

7.  CODE VALIDATION

The validation of the nonlinear indicial concept has
previously been discussed in References 6 and 7.
Further validation examples are provided here for
completeness.

The first example concerns the application of the IP
program to the case of an artificial neural network
trained on wind tunnel data of a pitching wing
undergoing dynamic stall [11].  It was previously
shown [7] that this nonlinear system includes at least
one critical state, which is associated with crossing
the static stall angle.  The trained neural network is
used here as a nonlinear plant, taken to represent
accurately the aerodynamic behavior (five sectional
force coefficients) associated with a rectangular wing
pitching from 0 to 60 degrees.

The nonlinear indicial modeling of this system is
characterized by the following: (i) a critical state
between 16 and 17 degrees angle of attack
(aerodynamic bifurcation associated with static stall),
(ii)  nine indicial responses in the region prior to
encountering the critical state (� < 16 deg.), and
(iii)  twenty-nine indicial responses in the post critical-
state region.  The nodal responses are scattered in a
two-dimensional space characterized by instantaneous
angle of attack and pitch rate.  In addition, since the
critical-state response changes with pitch rate, it is
represented using three nodal responses.

Figure 11 compares the prediction made with the new
code (labeled ‘IP (1997)’) to that made using a
slightly different treatment of the critical-state
encounter (labeled ‘mcvJ (1995),’ from Ref. 7). Thus,
we do not expect perfect agreement between the two
methods.  Nevertheless, the scattered two-dimensional
interpolation method and quadrature method were
matched, and the resulting comparisons are shown in
Figure 11.  The simulated wing motion in this figure
corresponds to a nominally constant pitch rate
maneuver.  The figure depicts the total sectional lift
coefficient build-up (thick solid line, labeled

The second validation example is the application of
the method to the prediction of the rolling moment,
C , of a 65−degree sweep delta wing.  For thel 

dynamic cases discussed here, the delta wing body
axis is held at a 30 degree angle to the freestream,
and the Mach number is approximately three-tenths.
The wing undergoes forced rolling motions -(t), and
the measured aerodynamic force coefficient time
histories are recorded.  These data are part of a
comprehensive database collected under a joint
program involving the U.S. Air Force Research
Laboratory (formerly USAF/WL) and the Canadian
Institute for Aerospace Research (IAR).

The physics of the flowfield and the aerodynamic
forces generated by the forced roll oscillations on the
65-degree delta wing have been the topic of numerous
papers over the years [4,5,10,12-14].  In particular,
the critical states of the rolling moment curve are
well-documented, and have been identified through
discontinuities of the static C  vs - curve, Figure 12.l

Myatt [12] used parameter identification techniques to
determine the indicial and critical-state responses of
the rolling moment with respect to roll angle.  The
work of Reference 12 provides analytical
approximations for the critical-state responses at
- = −11°, −8.25°, −4°, 5°, 8.5° and 11.3°.  In
between critical states, the indicial responses assume
the following form:
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Fig. 12. Time-Averaged Static Rolling Moment
Coefficient for both Increasing and
Decreasing - (from Ref. 10).

Fig. 13. Predicted Rolling Moment Response for
- = 0 ± 3 deg., k = 0.02.

Fig. 14. Predicted Rolling Moment Response for
- = 8 ± 2 deg., k = 0.14.

directly, whereas Myatt’s method integrates forward,

where  represents the slope of the model, resulting in a computationally efficient
quasistatic rolling moment curve with respect to -, differential (rather than integral) form for the
and  is the vortical component of equations.

.  The quasistatic curve  is known
(fitted) from experiment, and  is inferred from Some typical validation results are given in

 after calculating the potential flow component Figures 13 through 16, indicating good agreement
using QUADPAN [15].  The nonlinearity in Myatt’s between the two methods.  In the figures, the label
model comes from the variation in the static slopes ‘analytical model’ refers to Myatt’s prediction.
and from the existence of critical states.  In between
two critical states, the parameters � , � and 0 1 

remain constant.

Myatt’s NIR model thus provides a unique
opportunity to validate the IP code on a problem of
interest, by using different methods to carry out the
prediction calculations.  The modeling in Myatt’s
method and in the IP code is identical. By this we
mean that, for validation purposes, the IR and CSR
nodes used in the IP code are those of Myatt.
Furthermore, the parameter space is partitioned in the
same way as in Myatt’s representation (i.e., a total of
twelve critical-state responses: six for positive roll
rate, and six for negative roll rate).

The primary difference between the two models is
that, whereas the Myatt model has a complete and
continuous “knowledge” of the indicial responses
everywhere, the IP program is based on parametric
interpolation of approximately 30 (nodal) indicial

responses, which are known only at discrete values of
the parameter space).  Other differences include the
fact that, in IP, the “stationary” limit cycle behavior
(in the case of periodic maneuvers) is computed

starting from some assumed equilibrium point.
Finally, Myatt’s implementation is based on an
equivalent state-space form of the aerodynamic
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Fig. 15. Predicted Rolling Moment Response for
- = 8 ± 8 deg., k = 0.14.

Fig. 16 Predicted Rolling Moment Response for
- = 0 ± 12 deg., k = 0.08.

Fig. 17. Effect of Noise on Accuracy of Extraction.
(Insets depict a typical data set for a given
noise level, characterized by the number of
retained harmonics).

               

               8.  RESPONSE KERNEL
                   EXTRACTION / RESULTS

An important capability of the Indicial Prediction
System is its ability to extract nonlinear indicial and
critical-state responses from empirical data.  Such a
capability is necessary because it is, in general,
difficult to obtain the indicial responses of a system
directly.  The description of the nonlinear indicial and
critical state extraction scheme will be the topic of a
separate paper [8].  Sample extraction results are
presented here, since it is only together that the
prediction (IP) and extraction (IE) modules make the
IPS a true data-based prediction method.  From a
functional point of view, the method is similar to a
neural network: sample maneuvers (input/ouput
transfer functions) can be  supplied as “training” data.

These training data are used to extract the response
kernel of indicial and critical-state responses.  This
database kernel, in turn, is used to predict the
system’s response to arbitrary inputs.

To illustrate how the system works, we will, again,
consider the forced rolling motions of the 65-degree
delta wing.  This time, however, the indicial
responses are extracted from the data, rather than
using Myatt’s analytical representation.  (The present
results pertain to a small range of roll angles
(−4.05° ≤ - ≤ 5°) without any critical-state
transitions). 

First, two essential properties of the extraction method
are illustrated.  The first one is robustness with
respect to noise.  The second is the convergence
property.

Figure 17 depicts the results of a series of error
metrics tests in which the amount of noise in the
training data is varied in a controlled manner, through
the number n of retained harmonics.  The extractedharm 

nodes are then used to predict the very maneuvers
they were “trained” on.  The resulting total norm−2
(rms) error is shown in Figure 17 as a function
of n .  For reference, the error associated with theharm 

prediction made using Myatt’s IR nodes is indicated
by the dashed line and circles.  The insets represent
typical data for various levels of filtering.  The error
associated with the extracted nodes is indicated by the
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  Fig. 18. Nonlinear Indicial Prediction of f = 7.7 Hz,
- = ±3° Data Based on Extraction Using
(a) Full Data Set (Solid Line), and (b) One
Third of the Data (Short Dashes).  (Inset
indicates the predicted motion parameters
with respect to those of the partial training
data set; Myatt prediction indicated for
reference).

Fig. 19. Prediction of - = -4° to +4°, 60°/s Ramp
Maneuver.  The IE/IP (label: ‘SMS’)
Prediction is Based on Harmonic Data Only.

solid line and square symbols.  In each case, the The convergence property will be elaborated upon in
filled-in grey symbols represent the error when using Reference 8.  The sample results of Figures 18
the raw data (denoted n  → ∞).harm

The error corresponding to the extraction (square
symbols) is both lower than the error associated with
Myatt’s prediction, and remains flat or slightly
decreasing until n  > 12.  Only after at least 12harm

harmonics are retained in the data does the error
increase.  The flat portion of the curve illustrates the
fact that the IR nodes can successfully be extracted
for varying levels of noise.  Thus, the method appears
to be robust with respect to noise.  

The convergence property is defined as follows.  To
demonstrate that the IR extraction is not merely data
fitting but does indeed have predictive value, we must
be able to extract the nodal responses with sufficient
accuracy from a partial data set.  Furthermore, the
indicial responses must approach those obtained using
the full data set as the decimation is reduced.  The
basic idea is to attempt to extract indicial responses
using only a portion of the data available and to
subsequently verify the predictive potential of the
method on maneuvers which were not part of the
training data set.  This methodology is similar to that
used with artificial neural networks and other data-
based prediction methods.

and 19 are provided as illustrations.  Figure 18
compares full- and partial-data set predictions of the
dynamic rolling moment response for a harmonic
motion not included in the training.  Three predictions
are shown: the first (solid black line) is the IP
prediction based on the nodes extracted using all 15
harmonic maneuvers available; the second (dashed
line) is the prediction when only five maneuvers are
included in the training data set; the third prediction
is the Myatt prediction, which is included for
reference.  The apparent shift between the data and
the various nonlinear indicial predictions has been
observed previously, and the exact cause of this
discrepancy is not known.  (Some of the possibilities
include optically encoded roll angle measurement
error and/or the presence of nonlinear rate effects).
The important point of Figure 18 is that the partial
prediction, which is based on five maneuvers, is
almost identical to the prediction based on extraction
using the full data set.

Since the use of harmonic motion data for the
extraction is known to represent a “worst case
scenario” [8], a good test of the method is, first, to
extract the nodes using harmonic data, and then to
attempt to predict the ramp-and-hold data using the
extracted nodes.  Figure 19 shows the nonlinear
indicial prediction of the rolling moment for a ramp
motion from - = −4° to - = +4°, with a maximum
roll rate of approximately 60 deg./s. The result of the
extraction method (long dashes, labeled ‘SMS’) is
compared in this plot to the reference prediction of
Myatt (short dashes).  The SMS extraction-based
prediction uses cubic spline interpolation.  A



comparison with the same prediction using linear [4] Jenkins, J. E., Myatt, J. H., and Hanff, E. S.:
interpolation (not shown) indicates that the IE/IP “Body-Axis Rolling Motion Critical States of a
prediction is accurate, provided that one uses the
higher-order interpolation scheme on the static
component.  This is so, because of the relatively
small number of IR nodes in this region [8].  With
cubic interpolation, the IE/IP prediction is seen to be
similar to Myatt’s.  This result is significant, because
the nodes were extracted on the basis of harmonic
data only.

While predictions using only a partial data set are
typically less accurate, the results of Figures 18
and 19 confirm the predictive ability of the method.

9.  CONCLUDING REMARKS / SUMMARY

Nonlinear indicial response theory addresses the need
for high-fidelity prediction of nonlinear unsteady
aerodynamic characteristics.  The present paper
provides an overview of the Indicial Prediction
System as a tool kit for the aerodynamicist.
Synthetically constructed examples are used to
illustrate the modeling capabilities of the system, and
code validation examples are provided. The complete
system (nonlinear response kernel extraction from
experimental data, followed by indicial prediction for
novel maneuvers) is demonstrated for the rolling
moment of a 65−degree sweep delta wing in rolling
motion.
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