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ABSTRACT

A nonlinear indicial prediction model was developed
to predict the time-dependent unsteady aerodynamic
loads associated with flight maneuvers at high angles
of attack and high pitch rates.  This model is based on
nonlinear indicial theory and on efficient
parameterization of the indicial and critical-state
responses.  The parameterization is based only on
"local" information, such as instantaneous angle of
attack and pitch rate.  The present paper describes the
application of this nonlinear indicial model to the
prediction of the unsteady aerodynamic loads
associated with a rectangular wing undergoing
dynamic stall.  The wing data used to validate the
prediction is approximated by an artificial neural
network which was trained to reproduce in detail the
aerodynamic characteristics of the wing.  It is shown
that only a finite number of indicial and critical-state
responses is necessary in order to accurately construct
the flow responses for novel maneuvers.

NOMENCLATURE

Symbols and abbreviations
B Box function
c Wing chord
C Sectional drag coefficientd

C Drag coefficientD

C Lift coefficientL

C Sectional lift coefficientl

C Sectional pitching moment coefficientm

C Sectional normal force coefficientn

C Pressure coefficientp

C Sectional tangential force coefficientt

CSR Critical-state Response

H Heaviside step function
k Reduced frequency  (k ≡ 3c/2U )∞
q Pitch rate
QS Quasi-static
t Time
t Time at which the indicial step is applied*

U Freestream velocity∞
� Angle of attack
� Nondimensional pitch rate +

) Auxiliary time variable
) Time at which critical state is crossedc

�t Sampling period (nondimensionalized by
c and U )∞

� Parameter denoting dependence on prior
motion history

3 Angular frequency

Subscripts
CS Critical State
dyn Dynamic
max Maximum
min Minimum
qs Quasi-static
s Stall
∞ Time-asymptotic value (except for U )∞

Superscripts
CS Critical State
s Stall
" Derivative with respect to time
"" Second derivative with respect to time
~ Indicial function
* Evaluation at the time of the indicial step



-2-

1.  INTRODUCTION 2.  OBJECTIVE AND APPROACH  
 
In recent years, it has been possible to integrate the In order to predict the dynamics of maneuvering
flight-dynamics equations fairly efficiently using aircraft or missiles at high rotational rates and high
linearized aerodynamics which are occasionally angles of attack, it is essential to accurately and
supplemented with ad hoc methods (i.e., efficiently model the nonlinearities associated with
semiempirical simulations or wind tunnel data) to post-stall aerodynamics, including bifurcations and
include nonlinear unsteady aerodynamic effects.  With hysteresis.  Nonlinear indicial theory offers a viable
the expanded flight envelopes being considered for alternative which can fulfill the need for the efficient
future maneuvering aircraft, it has become and accurate modeling of nonlinear "plant"
increasingly important to be able to model and predict characteristics.  The knowledge of these
nonlinear, unsteady aerodynamics.  This includes the characteristics is a prerequisite for structural response
prediction of the aerodynamic response in the feedback techniques and control system configuration
presence of flow separation, shock movement, and design.  The goal of this effort is to provide an
vortex bursting, among other phenomena, at high unsteady aerodynamic model based on nonlinear
angles of attack and/or high angular rates.  Existing indicial response theory.  An important note
flow prediction methods are either too expensive or concerning the application of nonlinear indicial theory
lack the proper fidelity to represent the physics of the is that the indicial functions (responses) can be
aerodynamic flow.  A consequence of the poor obtained from numerical computations, experimental
modeling fidelity is a greater design uncertainty, lack tests, or by analytic means, whichever is appropriate
of performance, and, possibly, expensive redesigns or available.
and retrofits of existing fleet vehicles, such as the
F−18.  This paper is the second of two papers based on the

Future fighter aircraft will be required to perform approach for predicting unsteady aerodynamic loads
controlled maneuvers well beyond traditional aircraft at high � was performed on two distinct models for
limits, for example, pitch up and flight at high angles the unsteady aerodynamic responses.  The first model
of attack, rapid point-to-shoot, and other close-in (and the topic of the first paper, Ref. 1) is a two-
combat maneuvers.  To perform these ultrafast parameter delay differential equation model
multi-axis motions, future tactical aircraft and missiles approximating the pitch plane high angle-of-attack
will pioneer the use of innovative technologies such maneuvering of a fighter aircraft (full scale).  The
as thrust vectoring control.  To produce the best second model (and the topic of this second paper) is
aircraft for these extreme flight conditions, it is an artificial neural network which was trained to
necessary to combine successfully several disciplines reproduce the high angle-of-attack aerodynamic
in the design phase of the aircraft: flight mechanics, characteristics of a pitching rectangular wing (wind
unsteady aerodynamics, flexible structural modeling, tunnel test, Ref. 2). 
and control system simulation/design.  

These advanced maneuvers demand the use of
aerodynamic methods capable of predicting Much of the technical background for this work can
characteristics of the nonlinear post-stall regime for be found in Ref. 1.  However, a brief description of
multiaxis motions at extremely high rates.  At present, linear and nonlinear theory is given below for
the only methods of this scope are Navier-Stokes completeness.
methods.  However, their use in flight simulations
remains impractical at this time.  Nonlinear indicial 3.1.  Linear Indicial Theory
theory has the potential to circumvent some of the
present difficulties, while providing a fidelity to the The indicial approach is based on the concept that a
flow physics of which other methods appear characteristic flow variable , which describes
incapable. the state of the flow, can be linearized with respect to

present study.  The validation of the nonlinear indicial

3.  BACKGROUND

its boundary condition (or forcing function), (t), if
the variation of  is a smooth function of (t).
This allows the representation of  in a Taylor
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(3)

series about some value of  = ; thus 3.2.  Nonlinear Indicial Theory0 

If  is zero (a zero initial condition), then an
approximate solution is

(1)

Equation (1) is an approximation which becomes
more accurate as .  Also, Eq. (1) is exact if

 is a linear function of (t).  If the response
depends only on the elapsed time from the

perturbation  (a linear time invariant response)
then it may be shown (Ref. 3) that the formal solution
for  is  

(2)

where .

Hence, if the forcing function (i.e., the boundary
condition �) is known and if  is known from some
computation or experimental determination, then
Eq. (2) gives the value of  for any schedule of
boundary conditions (t) without the need to
compute  from first principles.  This has the effect
of reducing computational costs considerably.
Equation (2) is a semi-analytic relation between

 and its boundary condition or forcing
function (t).  The symbol  represents a set of
independent variables  such as spatial coordinates.
For simplicity, if these variables do not depend on
time, they ( ) are omitted in subsequent discussions.
 
As a general rule, linear indicial theory is valid away
from bifurcations such as changes in flow topology,
and provided that the perturbation displacements are
small.  Linear indicial theory has been validated in
numerous examples ranging from unsteady transonic
flow around airfoils (Ref. 4) and missile bodies
(Ref. 5) to separated flow at low Reynolds numbers
(Ref. 6).  The nonlinear flow associated with finite
amplitude perturbations (�� ≈ 5°) relative to a
reference pitching motion was also shown to be
predicted accurately using Navier-Stokes indicial
functions inferred in the Laplace domain (Ref. 7).

The basic idea behind the use of nonlinear indicial
functions, as defined by Tobak et al. (Ref. 8) and
Tobak and Chapman (Ref. 9) is that the linear
formalism, Eq. (2), can be retained in the form of a
generalized superposition integral, provided that the
nonlinear indicial response  is now taken to be a
functional , where  denotes the
dependence on the entire motion history:

Equation (3) is, therefore, a generalization of the
linear convolution model (Duhamel convolution
integral), Eq. (2).  It was formally shown that this
formulation is equivalent to a nonlinear functional
expansion of which the classical Volterra series is a
subset.  In the nonlinear indicial formulation, the
nonlinear indicial function  is defined as
the following Fréchet derivative:

where the step in boundary condition, , is applied
at time t = ), and H designates the Heaviside step
function.

Note from Eqs. (2) and (3) that the linear and
nonlinear indicial function approaches differ
fundamentally in two ways.  First, the fact that

 has a separate dependence on t and )
rather than on the elapsed time (t-)) alone signifies
that  in the nonlinear formulation can now depend
on the past history of the boundary conditions, i.e.,
"memory" effects are included in the kernel.  Second,
the functional dependency on  itself distinguishes
the nonlinear indicial response from its linear
counterpart.  In practice, the quantity  of interest
might typically be an integrated load (e.g., C ) orL 

generalized aerodynamic force (for flexible bodies),
while the boundary condition  might be an
aeroelastic modal amplitude, or the angle of attack, �.
In the latter case, the generalized superposition
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integral, Eq. (3), may express the full dependence of amounts of unsteady aerodynamic data.  Unsteady
C  on prior motion, given any arbitrary schedule aerodynamic responses are necessary, both to generateL

of �(t).  This formalism is valid as long as  remains the required indicial functions and critical-state
Fréchet-differentiable, a condition which is violated at responses, and to compare the indicial theoretical
bifurcation points. prediction to the data for arbitrary maneuvers.

In order to address this point, Tobak and Chapman It would be ideal to use unsteady aerodynamic
(Ref. 9) modified the theory so as to include responses inferred from experimental tests.  At this
bifurcation points.  These are identified as discrete time, however, many of the practical problems
points during the aircraft motion at which Fréchet involved in extracting such information have not been
differentiability is lost.  This can be due to the loss of resolved.  An alternative is the use of Computational
stability of a particular solution (or equilibrium state Fluid Dynamics (CFD), but this approach is expensive
prior to the bifurcation) changing to a new equilibrium and impractical.
state which is stable.  This discrete change to a new
equilibrium at the critical (bifurcation) time )  is The approach taken in the present research has beenc

accommodated in the theory by splitting the to consider, instead, the use of efficient and,
generalized superposition integral as follows hopefully, reasonably accurate nonlinear models for

where

is taken in the limit: →0.  The term 
represents the possibility of a discontinuous jump.
Recent work (Ref. 10) at Wright Laboratory has
shown, for example, that when a critical state of the
flow is crossed, this gives rise to unusually long
transients.  These long transients are believed to be
associated with the jump response, .

3.3.  Nonlinear Indicial Prediction Model

The nonlinear indicial prediction model is based on
nonlinear indicial theory and key simplifications
thereof.  Three technologies form the core of the
model: (1) nonlinear indicial theory, (2) functional
interpolation of parameterized responses, and
(3) artificial intelligence-based techniques for
partitioning the indicial function space.  A basic
description of the model is provided in Ref. 1.  Key
aspects related to the treatment of critical states are
contained in Ref. 11.

4.  METHOD

The development, testing, and validation of the
nonlinear indicial prediction model require large

the unsteady flow behavior.  Specifically, two models
were considered.  The first model (referred to as the
Goman-Khrabrov model) is an analytical model which
approximates the flight test aerodynamic responses of
a fighter aircraft undergoing "Cobra"-type maneuvers.
The application of nonlinear indicial theory to this
first example (i.e., the Goman-Khrabrov model) is the
topic of Ref. 1.  This first example is useful in
understanding the foundations of the nonlinear indicial
prediction model.  However, it is a simple nonlinear
model, in the sense that there are no crossings of
critical states.  The second model is an artificial
neural network which was trained on wind tunnel data
of a pitching rectangular wing undergoing dynamic
stall (Ref. 2).  This second application is an example
of a highly nonlinear plant and includes at least one
critical state (aerodynamic bifurcation), requiring
special handling.  The application of nonlinear indicial
theory to the neural network example is the topic of
the present paper.

To avoid any possible confusion, from here on the
term "model" will be reserved for the nonlinear
indicial prediction scheme referred to in Section 3.3.
By contrast, the Goman-Khrabrov and neural network
"models" (in the old terminology) will be referred to
as "systems," since they approximate the behavior of
real fluid systems (a pitching aircraft or a pitching
wing).  Accordingly, the output of these systems will
be referred to as the "data," as opposed to the
"prediction," which is the output of the indicial model.

The Goman-Khrabrov and neural network systems
both exhibit complex nonlinear behavior.  In each
case, they are used (1) to generate the indicial and (if
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required) critical-state-response data, and (2) to course, an imperfect assumption, and a more
compare against the indicial theoretical prediction for conservative viewpoint would be to consider the
novel maneuvers.  The application of the indicial neural network simply as a nonlinear "plant" which
theoretical prediction method to the neural network "happens" to accurately model the flow responses
system is described below. under particular conditions.  The practical advantages

of using a neural network are substantial.  In
5.  APPLICATION OF THE METHOD TO particular, the simulated unsteady aerodynamic loads

THE NEURAL NETWORK SYSTEM resulting from many thousands of maneuvers can be

5.1.  Description of the Neural Network System issues (for instance, the inclusion of critical states) to

The neural network was trained on wind tunnel data generation of flow responses, as would undoubtedly
for a rectangular wing (NACA0015 profile, chord have been the case with either CFD or experiment.
Reynolds number Re = 70,000) pitching about the 1/4
chord location.  Several sets of data are available A validation of the neural network was performed
including pitch up from � = 0° to � = 60° (constant against the ensemble-averaged experimental data of
non-dimensional pitch rate 0.01 <� < 0.2), pitch Schreck and Faller (Refs. 2, 12, 13).  The results of    

+

down (same bounds and pitch rates), and various the validation study are described in Ref. 11.  In
harmonic wing motions with and without dynamic particular, it was found that the comparison between
stall (overall range: 3° <�< 25°, 0.05 <k< 0.15).  For        

more detail, see Ref. 2.
 
The particular neural network program that is used in
this study is the "pitch-up" neural network, which is
treated as a "black box" substitute for the experiment.
The pitch-up neural network predicts the sectional
force coefficients C , C , C , C , and C  in addition tol d n t m

the pressure coefficients at 15 locations on the upper
surface. These predictions are made simultaneously at
three span locations (0%, 37%, and 80% of the total
wing span).  The location of the pressure taps is
shown in Fig. 1.  The architecture of the neural
network is schematically illustrated in Fig. 2.  The
neural network has an input layer with 47 entries (45
fed back C 's, plus the instantaneous � and d�/dt),p

two hidden layers, each with 32 neurodes, and 60
outputs (45 predicted C 's and 15 force coefficients).p

This neural network system was shown (Ref. 12) to
replicate not only the constant pitch rate data it was
trained on, but also to be able to predict the flow
responses to "novel maneuvers" (both constant and
variable pitch rates) with surprisingly high accuracy,
provided that the physics of the flow are similar.  For
our purpose, the trained neural network can be
considered as a "black box" prediction method for the
time-dependent loads and pressure distributions.  This
black box prediction is an accurate representation of
the flow within a reasonably wide parameter space,
and it will be assumed that the flow responses
predicted by the model are "as good" as if they were
directly measured in wind tunnel tests.  This is, of

generated at negligible cost.  This allows modeling

be resolved, while spending less time on the

the neural network and the experimental data tended
to be more favorable at 0% span.  Therefore, the
remainder of this paper deals with the 0% span
location.

5.2.  Indicial Function Determination

The basic procedure for determining the indicial
functions of the neural network system is the same as
for the Goman-Khrabrov system of Ref. 1, namely,
the straightforward application of the definition of the
Fréchet derivative.  Following the definition of the
indicial response, two almost identical maneuvers
� (t) and � (t) are carried out.  The two maneuvers1 2

coincide for t < ).  At t = ), the motion is stopped
for the first maneuver (� (t) = � ()), for t ≥ )).  The1 1

second maneuver is similarly stopped, except that the
angle of attack is incremented by 	� at time )
(� (t) = � ()) + , for t ≥ )).  Let C (t) and2 2   m,1

C (t) denote the aerodynamic responses associatedm,2

with � (t) and � (t), respectively.  The indicial1 2

response is calculated as

This technique is referred to as the direct technique.
Here, two points are worth noting.  First, because the
neural network output is a discrete time series at fixed
non-dimensional time intervals (in this instance,
�t = 0.12), the "stepped" response required for the



-6-

determination of the indicial response is poorly hypothesis. 
approximated, resulting in a less accurate indicial
function.  The second area of difficulty is that, in 5.3.  Critical State
order to approximate ��(t) ∝ H(t-)) and
�(d�/dt) ∝  consistently in the limit ��→0,
the possible values of t  (the time at which the*

infinitesimal perturbation is applied) must be
separated by multiples of the fixed sampling
period, �t.  As in any numerical integration, the
validity and accuracy of the globally constructed
response depends on the indicial response being the
leading order term in some Taylor series expansion
valid about the local �.  At a minimum, the radius of
convergence of the series expansion should be larger
than the integration step, ��  = � �t.  Thus,min

+

provided that the indicial responses are smooth
functions of �, an accurate numerical integration
should be possible.

Early in the project, this was discovered not to be the
case for the neural network.  Rapid variations of the
indicial functions were noted as a function of �.  This
is illustrated, for example, in Fig. 3 for the case of a
nondimensional pitch rate � = 0.04.  The indicial+

 

functions of the neural network are fairly regular
(self-similar) only in the intervals 0° < � < 15° and
25° < � < 60°.  Furthermore, "catastrophic"
nonlinearities are encountered near � = 16° to 17°
angle of attack.  Near these angles of attack, the
indicial responses are characterized by unusually long
transients, as well as reduced convergence properties
with ��→0.  Both of these characteristics can be
seen in the example depicted in Fig. 4.  (For
reference, for all other indicial responses, convergence
is obtained for �� < 0.05°).

The occurrence of extra long transients and the
pathological sensitivity to the size of the indicial step
both tend to suggest the proximity of a critical state.
A further indication that this may be the case is the
fact that the angle of attack range where this behavior
is observed happens to be close to static stall (in
contrast, dynamic stall, at � = 0.04, occurs around+

  

23° angle of attack).  The indicial function shown in
Fig. 4 (� ≈ 16.3°) appears to be transitional between
indicial functions (immediately prior to this
angle-of-attack) where the quasi-static increment
dC/d� is positive, and indicial functions (for slightlyl

higher angles-of-attack) where dC /d� is negative.l

The implied discontinuity in ∂(	C / | )/∂� (seel )=∞
Fig. 5) is, of course, another manifestation of static
stall, and appears to support the critical-state

In the absence of flow bifurcations, the nonlinear
indicial theoretical prediction for (for example) C  isl

given by the familiar generalized Duhamel
convolution integral:

Use of this equation requires that C  be Fréchet-l

differentiable, i.e., that

exists at all points in the interval [0,t].  At bifurcation
points during the aircraft motion, Fréchet-
differentiability is lost, by definition.  This discrete
change from one equilibrium state to another at the
bifurcation time )  must be accounted for by splittingc

the generalized superposition integral as follows (see
Ref. 9):

where 

  

is taken in the limit: .

One of the difficulties associated with the above
formalism is the fact that it requires preemptive
knowledge of the time instants )  at whichc

bifurcations take place during the maneuver.  In recent
years, work at Wright Laboratory (see, e.g., Ref. 10)
has shown that these bifurcations may be associated
with the crossing of a "critical state."  The crossing of
a critical state during a maneuver is typically
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associated with a change in flow topology (for narrow region where the time-asymptotic response is
example, the appearance/disappearance of separated nonzero (�C |  ≈ -0.25).  Figure 9 depicts the
flow regions, or the occurrence of vortex burst gradual increase in the duration of the transient
upstream of the trailing edge), and is characterized (defined as the elapsed time required for �C  to
during unsteady maneuver by the existence of extra reach 95% of its time-asymptotic value) near the
long transients.  Most importantly, there is evidence critical state.  The singularity at �  is evident, and so
that the existence of critical states may be predicted are its precursor symptoms (the increase in transient
from quasi-static discontinuities, i.e., discontinuities of length, from either side).  Although the actual
the static loads or their derivatives with respect to the singularity is a well-defined point (see Fig. 8), the
state variable.  The term �C  represents the results of Ref. 13 support the notion that the criticall

CS

possibility of a discontinuous jump.  �C  will be state in the present system ought to be treated as al
CS

referred to as the "critical-state response" (CSR, for finite region, rather than a point.
short).

In order to circumvent the usual difficulties associated with good precision at � = 0.0001, it is relatively
with a discrete time series (fixed �t = 0.12) and, in easy to locate the critical-state region for all pitch  

particular, to pinpoint accurately the critical-state rates investigated (0.0001 ≤ �  ≤ 0.2).  The results
response, consider the quasi-static ramp �  = 0.0001. (not shown here) suggest that �  is roughly constant+

For this low nondimensional pitch rate, each feedback as a function of pitch rate, which constitutes an
iteration ("clock count") of the neural network important simplification, from a  modeling perspective
corresponds to a step in angle of attack (see Section 5.6).
�� ≈ 0.00069° (as opposed to 0.275° at �  = 0.04).+

The resulting quasi-static lift curve (Fig. 6) displays Figure 10 depicts the dynamic portion of the critical-
characteristics associated with precipitous stall, around state response at � = 0.1, defined as
� ≈ 16.46°.  The existence of a nonzero critical-state  

response, �C , was demonstrated by systematicallyl
CS

"sliding" a window [) − ,) + ] by the minimumc c

increment �) = , using =�t.  Using this method,c

the angle of attack at which the aerodynamic
bifurcation occurs was determined to be 16.4043° ≤ �
≤ 16.4050°.  Note that stall does not occur until
�  ≈ 16.46°, corresponding to as many as 80 clocks

counts of the neural network at �  = 0.0001.  This is,+

of course, a manifestation of the fact that the motion
is not really quasi-steady, resulting in an already
noticeable difference between the critical-state angle
and the (dynamic) stall angle, i.e., in general:

Figure 7 depicts the abrupt transition which takes
place near the critical state.  An extremely long
transient (approximately 60 convective time scales) is
observed prior to the jump.

A detailed analysis of the "anatomy" of the critical
state is beyond the scope of the present paper.
However, two figures are included to highlight some
of the symptoms associated with the crossing of the
critical state.  Figure 8 depicts, on a linear scale, the

l )U∞
CS

l
CS

CS

Having determined the location of the critical state
+

  

+

CS

+ 
 

Thus, in Fig. 10 the quasi-static load discontinuity is
removed from the critical-state response.  Note that,
in order to calculate , a "quasi-static" critical-
state response had to be generated in such a way that
the "stop angles," �() − ) and �() + ) matchedc c

closely those used at � = 0.1.  Figure 10 depicts the+ 
 

purely dynamic portion of the critical-state response.
As previously noted, the crossing of the critical state
is associated with a large transient response.

5.4.  Model Prediction

There are two levels of testing of the indicial
theoretical prediction.  The first level involves
reproducing the very maneuver from which the
indicial and critical-state responses were determined,
prior to the indicial step.  The first level of testing
examines the feasibility of smoothly blending a finite
number of discrete indicial functions to predict the
unsteady aerodynamic response in the case where
these indicial responses are known exactly.  By
"known exactly" we mean that there should not be
any error or uncertainty in the indicial function due to
effects of prior motion history.  Such issues are
addressed by the second level of testing, which
assesses the accuracy of the prediction for novel
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maneuvers, based only on a finite number of pre- critical state(s),  the nonlinear indicial prediction can
recorded indicial and critical-state responses. be of arbitrarily high accuracy, provided that a

In order to assess the importance of including the For example, at a pitch rate of �  = 0.04, a near
critical-state response, we start by presenting results perfect prediction is obtained (see Fig. 12), using one
in which functional interpolation error is reduced to a indicial function every 0.275° in angle of attack (i.e.,
minimum by using all available indicial functions a total of over 200 indicial functions for the duration
(with the exception, naturally, of those between ) − of the maneuver shown in Fig. 12)!  However, itc

and ) + ).  Functional interpolation error is also would be impractical to use such a large number ofc

reduced further by ensuring that the critical-state- indicial functions, especially with several state
response interval, [) − , ) + ] be "sufficiently variables.c  c

large" to encompass the region of rapid change.  This
region is typically located after the crossing of the The accuracy of the indicial theoretical prediction
critical state.  Thus, the interval  [) − , ) + ] is model depends on the accuracy of the indicialc  c

asymmetric, with  >  > 0.  For example, near functional interpolation scheme.  This accuracy, in
perfect agreement between data and prediction is turn, depends critically on adequate sampling of the
shown in Fig. 11, using  = 2�t and  = 6�t.  For indicial function space.  If too many indicial functions
reference, the "quasi-static" stall curve (obtained using are required, then the method may not be economical
a very small pitch rate, �  = 0.0001) is also shown in in practice, particularly when one deals with multiple+

the figure.  Excellent agreement is also observed for degrees of freedom (not just �, as in the present
the prediction of the pitching moment build-up, study).
�C (t), shown in Fig. 12.m

The predictions of Figs. 11 and 12 correspond to a that it is possible to choose as little as nine indicial
constant pitch maneuver with �  = 0.04.  Figure 13 responses and maintain a reasonably good predictive+

compares data and indicial theoretical predictions of accuracy throughout the maneuver.  The deterioration
the sectional lift build-up, �C , at �  = 0.02, of the prediction accuracy is illustrated by comparingl

+

�  = 0.04, and �  = 0.06.  An overall prediction the prediction using only nine indicial responses to the+ +

accuracy on the order of one percent is observed at prediction using almost 300 indicial responses.  Note
�  = 0.02 and �  = 0.04.  At �  = 0.06, the that, in general, the location (angle of attack)+ + +

prediction accuracy is not as good (approximately corresponding to these indicial responses needs to be
seven percent, on average).  There are at least two optimized.  To this end, it has been shown (Ref. 11)
possible causes for the decreased accuracy at larger that artificial intelligence-based tools can automate the
rates.  The first one is related to the sampling (recall task of partitioning the indicial function space and
that the validity and accuracy of the globally "recognize" the presence of critical states.
constructed response depends on the indicial response
being the leading order term in some Taylor series 5.6.  Prediction of Novel Maneuvers
expansion valid about the local �; this condition may
not be adequately satisfied at the higher pitch rates, The second level of testing of the indicial method
since �t is fixed).  The second possible cause of involves demonstrating the possibility of predicting
decreased accuracy may be the presence of a second the load time history for an arbitrary novel maneuver,
critical state near � ≈ 55°. i.e., one for which neither the indicial functions nor  

the critical-state response are known ahead of time.
5.5.  Reduction

"Reduction" is defined as the process of determining constant pitch rate maneuvers at �  = 0.02, 0.04 and
an equivalent sparse sampling of the indicial function 0.06, 38 indicial responses and 3 critical-state
space, while retaining the prediction accuracy of the responses were recorded and stored.  Previous
nonlinear indicial model.  The results of the study of research (Ref. 1) based on the application of nonlinear
Ref. 11 suggest that, given the knowledge of the

2

sufficient number of indicial responses is available.
+

 

For the same pitch rate of �  = 0.04, Fig. 14 shows+

As a byproduct of the first level of testing for
+

 i.e., both �  and �C2
CS

CS
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indicial theory to the Goman-Khrabrov differential effects of prior motion history on the indicial
equation model suggests that, at a minimum, a functions.
parameterization of the indicial function space using
the instantaneous  and  ought to be used.  There 6. COMPARISON WITH THE METHOD OF
is no assurance a priori that such a parameterization
is adequate.  However it is a logical first step, the
implementation of which is described below.

The location of the 38 recorded indicial functions in 
parameter space is shown in Fig. 15.  These 38
indicial functions are referred to as the functional
interpolation nodes of the prediction method.  To test
the method, two novel maneuvers are considered.
The first maneuver is a variable pitch rate, cosine-
type, ramp from 0 to 60° angle of attack, with a
maximum pitch rate � = 0.05.  The second+

max  

maneuver is a blended double cosine ramp from
0 to 50° angle of attack, with a maximum pitch rate
� = 0.045.  Both hypothetical maneuvers are+

max  

depicted in Fig. 16.

The parameter space representation of these two
maneuvers is given in Fig. 17, along with several key
indications such as dynamic stall (as measured by the
peak lift), and the location of the critical-state-
response interval [�() − ), �() − )] (denoted CSRc c

in the figure).  Also indicated in the figure (dotted
lines) are the trajectories corresponding to the prior
motion history of each of the interpolation nodes.
Both the indicial responses and the critical-state
responses are functionally interpolated in 
parameter space.  Thus, the prediction of the load
build-up for a novel maneuver is a completely "hands-
off" process: it does not require any prior knowledge
of the critical-state response associated with that
maneuver, nor does it require any knowledge of any
of the indicial functions associated with it.

The resulting indicial theoretical prediction for
maneuvers #1 and #2 is shown in Figs. 18 and 19,
respectively.  The results of Figs. 18 and 19
demonstrate that, as in the study of the Goman-
Khrabrov model (Ref. 1), indicial theory, coupled with
appropriate multivariate functional interpolation
methods, can be used as a high angle-of-attack
prediction method.  This latest demonstration shows
that this is so, even in the case where the crossing of
a critical state is encountered.  An equally important
result is that a two-dimensional parameterization of
the indicial function space (in this instance, based on 
and ) appears to be sufficient to characterize the

STABILITY DERIVATIVES

In what follows, two distinct applications of the
method of aerodynamic stability derivatives to the
neural network system are presented.  The first
application is a so-called constant coefficient
approach.  In the second application, the coefficients
are obtained from a table look-up and from actual
calculations.

6.1.  Constant Coefficient Aerodynamic Derivatives

For comparison purposes, a simple stability-derivative
approach was implemented and tested.  A priori, it is
assumed that (as a minimum) the sectional loads for
the rectangular wing can be modeled according to
terms in angle of attack and pitch which are linear,
except for an alpha-dependence of the pitch damping
derivative, and for a quadratic term in alpha, i.e.:

using standard notation.  The inclusion of the
quadratic term is the lowest order nonlinearity in �.
Since the configuration is symmetric,  it is understood
that the coefficients of even powers of �, such as

, must change sign for negative �.

Also, since the motion of the wing is forced around
the 1/4 chord point, the pitch rate q and plunge rate 
are really not independent.  We write, therefore, for
simplicity

where the pitch rate q is the nondimensional pitch rate
(referred to in this study as � ), and it is understood+

that the wing experiences simultaneously a
streamwise-varying plunge.  The constant coefficients3

were determined from the
neural network data using standard identification

 3
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techniques.  The tabulated parameters , was applied to a model problem consisting of an
were determined by the method described artificial neural network (Ref. 2) which was trained to

in Section 6.2. reproduce the detailed aerodynamic characteristics of

Figures 20 and 21 (for �C , and �C , respectively) validation of the method involved recording a finitel m

each display three load build-up curves: the data from number of indicial and critical-state responses which
the neural network (solid line), the nonlinear indicial were subsequently used to construct the flow response
theoretical prediction (short dashes), and the to arbitrary schedules of �(t).
prediction obtained using the above implementation of
the stability-derivative approach (long dashes). The indicial method is found to be significantly more
Except for the correction provided by the alpha- accurate than aerodynamic derivatives-based methods,
dependent pitch damping derivative terms, the which are not appropriate for true unsteady
"constant coefficient" stability-derivative predictions maneuvers, particularly when critical states are
in Figs. 20 and 21 are little more than a test of the crossed.  The present results suggest that indicial
validity of the quadratic assumption for �C, �C  and theory, coupled with appropriate multivariatel m

do not show any evidence of critical state nor, of functional interpolation methods, could be used as a
course, of dynamic stall. high angle-of-attack prediction method.  These results

6.2.   Table Look-Up with Dynamic Derivatives case where the crossing of a critical state is

An alternative to the "constant coefficient" stability- the indicial and critical-state function space appears
derivative prediction is to use "table look-up" for achievable using only local information, such as the
static aerodynamics C (�), C (�), augmented with instantaneous angle of attack and pitch rate.l m

alpha-dependent pitch damping derivatives:

 (4)

The terms C(�;0) and C (�;0) are the quasi-static liftl m

and moment curves.  The terms and
are the pitch damping derivatives.  They were

determined from Eq. (4) applied at two pitch rates
(� = 0.2 and � = 10 ) by eliminating C (�;0) and+ + -4

  l

C (�;0).  Having determined the pitch dampingm

derivatives as a function of �, Eq. (4) was used to
predict the constant pitch rate maneuver at � = 0.04,+ 

 

using q = 0.04.  The resulting predictions are shown in  

Figs. 22 and 23.  Neither the "constant coefficient"
nor "table look-up" implementations of the method of
stability derivatives can correctly predict dynamic stall
(whether � , �C , or �C ).  In contrast, nonlinearS l m

S S

indicial theory accurately predicts the stall angle as
well as the load build-ups from 0° to 60°.

7.  CONCLUSIONS

A nonlinear indicial prediction model was developed
to predict unsteady aerodynamic responses.  The
model is based on nonlinear indicial response theory
and on functional interpolation of parameterized
responses.  The nonlinear indicial prediction method

a pitching wing undergoing dynamic stall.  The

support the initial conclusions of Ref. 1, even in the

encountered, namely, that efficient parameterization of
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Fig. 3. Plot of 23 Indicial Responses Illustrating the Wide
Variations in the Character of the Responses with
Angle of Attack, � =0.04.+

Fig. 6. Quasi-Static Lift Curve.  (Obtained using � =10 ).+ -4

Fig. 4. Convergence of Lift Coefficient Indicial Response with
Step Size at t =7.32 (�≈16.3°), � =0.04.* +

Fig. 8. Variation of the Time-Asymptotic CSR as a
Function of the Window Interval Location Near � ,CS

� =10 .+ -4

Fig. 5. Variation of Initial and Time-Asymptotic Values of the
Lift Indicial Response as a Function of Angle of Attack,
� =0.04.  (Large triangles indicate the location of the+

23 indicial responses shown in Fig. 3).

Fig. 7. Variation in the Measured Windowed Response as a
Function of CSR Interval Location, � =10 .+ -4
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Fig. 11. Lift Indicial Theoretical Prediction Versus Data, � =0.04. +

(The quasi-static lift curve is indicated for reference).

Fig. 14. Indicial Theoretical Prediction at � =0.04 Using 9+

Indicial Response, With and Without Explicitly
Accounting For the Crossing of a Critical State.

Fig. 9. Variation of the CSR Transient Duration as a
Function of the Window Interval Location Near � ,CS

� =10 .+ -4

Fig. 10. Dynamic Component of the Critical-state Response for
� =0.1.+

Fig. 12. Pitching Moment Indicial Theoretical Prediction
Versus Data, � =0.04.  (The quasi-static moment+

curve is indicated for reference).

Fig. 13. Indicial Theoretical Prediction Versus Data at
Various Pitch Rates.
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Fig. 17. Parameter Space Representation of Two Novel Maneuvers
Illustrating Their Trajectory in Relation With the Location
of the Functional Interpolation Nodes.  (The grey vertical
lines marked "CSR" delimit the critical-state response
interval, [) − , ) + ]).c c

Fig. 15. Parameter Space Representation
of the 38 Functional Interpolation
Nodes.

Fig. 19. Indicial Theoretical Prediction for Novel
Maneuver #2.  (Solid line: data; symbols:
indicial theoretical prediction; dashed line: angle
of attack history).

Fig. 18. Indicial Theoretical Prediction for Novel
Maneuver #1.  (Solid line: data; symbols: indicial
theoretical prediction; dashed line: angle of
attack history).

Fig. 16. Angle of Attack Time History of Two Novel Maneuvers.
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Fig. 22. Comparison of Indicial Theoretical Prediction for Lift
Versus the Method of Dynamic Stability Derivatives,
Using �-Dependent Pitch Damping Derivative.

Fig. 20. Comparison of Indicial Theoretical Prediction for Lift
Versus the Method of Stability Derivatives, Using
Constant Coefficients.

Fig. 21. Comparison of Indicial Theoretical Prediction for
Pitching Moment Versus the Method of Stability
Derivatives, Using Constant Coefficients.

Fig. 23. Comparison of Indicial Theoretical Prediction for
Pitching Moment Versus the Method of Dynamic
Stability Derivatives, Using �-Dependent Pitch
Damping Derivative.


