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Introduction / Motivation

« Aecrospace products require integration of multidisciplinary data

* Need for high-level representation based on
— Limited experimental or numerical data
— Data from heterogeneous sources

e Multidimensional response surface technology

— Can handle

« Multiple fidelity levels

* Multiple disciplines

» Technical and nontechnical data
— Characteristics:

* Analytical representation

* Constructed on-the-fly

e Cumulatively enriched
— Applications:

» Design optimization

* Mutual data set enrichment via data fusion
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Background

» Response surface (RS) technology

— 1increasingly used:
 Structural reliability
 Instrument calibration
» Aerodynamic and trajectory optimization

— well-suited for
» Automated searches
» Acceleration of optimization tasks, rapid strategy evaluation

* Curse of dimensionality

— Precludes
* Polynomial, finite-element approximations
— Candidates:
* Neural networks
» Support vector machines
» Multidimensional splines
» Self-training radial basis function networks (NEAR RS)
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NEAR RS

e Two modules
— Metamodel (response surface) identification

— Metamodel evaluation/interrogation
» Graphical user interface / multidimensional viewer

« Ability to estimate further sampling needs / model quality
— Uncertainty estimation
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Four Examples

e Design optimization
— Refueling drogue canopy
— Large asymmetric launch vehicle payload fairing

e Mutual enhancement of data sets
— Correction of aerodynamic data base using experimental data

* Uncertainty prediction
— X-38 forebody aerodynamics

|:> Significant acceleration of optimization tasks
— CFD usable 1n preliminary design

—) Data fusion
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Refueling Drogue Canopy Design

Reference Canopy
------- Vent
Optimized Canopy

TRadiaI Force

Standard C-130 refueling drogue Geometric parameters
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Canopy Optimization

* 4 independent variables (0, r,, 0 , 0,), 2 dependent variables (Cy, Cp)
« Constraints via objective function specification -----

e Procedure: k

— Seed the design space / Design of Experiments
— Response surfaces identification

— Global search <---cccccece === -

— Add new points to the design space
» Allow for dynamic strategy

— Stop criterion
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Radial Force Response Surface Evolution
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Canopy Design Evolution
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Large Asymmetric Launch Vehicle
Payload Fairing Design

« Aerodynamic and structural
design of payload fairing

 Spacecraft with optical mirror

up to twice the diameter of an
EELV

« Reference vehicle: Boeing Delta
4 Heavy

T

Thom Baur © The Boeing Company
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Aerodynamic Design

e Preliminary design goals
— Stability and control
— Mass

 Methods

— Optimization

— Computational Fluid Dynamics
« Aerodynamic objectives

— Low lateral force (C,))

— Smooth variation with respect to
angle of attack near Mach 1.0

WwWw.nasa.gov
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Payload Fairing Optimization

* 9 independent variables (6 active for parameterization of
shape), up to 4 dependent variables C (o;,M;) ;- 4, =C;

* Objective function specification=F(C ,,C_ ,,C 5, C )

m,1>

* Procedure:
— Seed the design space / Design of Experiments $$3$
— Response surfaces identification $
— Global search

— Add new points to the design space (strategy)
« Automatic remeshing / Overflow / Postprocessing ~ $$5$

— Stop criterion
— Verification
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Mutual Enhancement of Data Sets

* Global metamodels can be used to
— perform data fusion operations
— enhance the usefulness of limited experimental data

 Interpolation / Extrapolation / Data generalization
— 1ll-posed problem

— regularizing assumptions

physics based models
mathematical equations
smoothness assumptions
empiricism
hyper surface
— going through the experimental data
— “supported” by additional computational constraints
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Correction of Aerodynamic Databases Using
Experimental Data

* Wind-tunnel data assimilation for use in flight simulations
* Generic body-tail configuration
* Two data sets

« experimental (wind tunnel) data
« “computational” data (MISL3 database)

— Forces and moments

— Wide range of angles of attack, roll angles, and Mach numbers

* “Error database”
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Error database

 Defined as difference between two fits
* Four-dimensional
« Analytic (smoothly varying)

——a——  Wind tunnel data
MISL3

eps

Angle of Attack, deg

............

vvvvvvvvvv

Roll Angle, deg

——0—— Wind tunnel data
—«——— MISL3
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Error database

e Used to “correct” MISL3 database

» Takes into account experimental measurements

« Smart interpolation/extrapolation
* Process 1s automatic

* No equations specified
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Wind Tunnel Data Enhancement of MISL3
Database

MISL3 prediction ———— MISL3 prediction
Data-corrected (fusion) ——  Data-corrected (fusion)

Wind-tunnel data Wind-tunnel data

Side Force (Rescaled)

Rolling Moment (Rescaled)

Side Force Rolling Moment
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Uncertainty Prediction in NEAR RS

* Uncertainty estimation based on propagating
statistical descriptions of uncertainty in
measurements (input data) to uncertainty in the
response surface coefficients.

* Approach
— uses the covariance of the output measurements

— based on theory of best linear unbiased estimation
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Uncertainty Modeling (X-38 Reentry)

* 3D Euler solutions (NASA Ames)

« Each CFD solution = 1 point in multidimensional
space

* Solution space parameterized by
* Mach number
e pitch angle
* grid resolution
e algorithm
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Uncertainty Modeling (X-38 Reentry)
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Cumulative Global Metamodels: Conclusion

Significant cost savings in design optimization tasks

Fully analytic, mathematical description
— easily manipulated and shared
— Data structure flexibility / use of heterogeneous data sets

Rational basis for propagating uncertainty estimates

— suitable for risk assessment

Metamodel uncertainty can be used as a driver for
decision making, further populating data sets.
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Questions?
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