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Abstract

Aeroelastic studies play a critical role in aircraft safety and design and, to accelerate the design process
and reduce life cycle costs, nonlinear aerodynamic effects must be considered from the onset.  The
Volterra theory of nonlinear systems provides a mathematically rigorous approximation technique to
describe these unsteady aerodynamic effects.  A critical problem, however, is the difficulty of identifying
the Volterra kernels.  The present paper demonstrates the use of a time-domain Volterra kernel
identification method which uses physically realizable inputs, is robust with respect to noise, and
minimizes or eliminates the need for analytical assumptions.  This technology provides a rational means
of simulating nonlinear aerodynamic behavior in multidisciplinary analyses and will facilitate the
incorporation of high-fidelity tools into the preliminary design phase of aerospace vehicles.

1  Introduction

Recent results [1] have demonstrated the feasibility of developing a new Volterra kernel identification tool
suitable for aeroelastic analysis from wind-tunnel or flight-test data.  The method is based on the well-
established Volterra-Wiener theory [2,3] of nonlinear systems and uses regularization techniques [4] to
create a versatile and practical tool for uncovering and formulating nonlinear reduced-order models of
aeroservoelastic systems.  These models can be derived from experimental observations and numerical
models alike, and they have the potential to combine speed and high accuracy, making them suitable for
control system embedding and nonlinear control system design.

A low-order version of the time-domain Volterra kernel identification method has been assembled into
a prototype nonlinear identification and prediction software system.  This system uses physically realizable
inputs, is robust with respect to noise, and minimizes or eliminates the need for analytical assumptions.
The problem of indirect kernel identification (i.e., the inference of the kernels from experimental
observations) is, fundamentally, an improperly posed problem.  This improperly posed problem arises as
a result of having to solve integral equations analogous to those appearing in inverse scattering problems,
and inverse problems in general.  The solution method used herein expands on a unique extraction
technique previously developed [5] for the identification of nonlinear indicial kernels.  This technique has
been applied to wind-tunnel data from a maneuvering delta wing configuration [6].  Its application to the
identification of Volterra kernels in the case of time-invariant aeroelastic systems is shown here.

Although there are a number of Volterra kernel identification techniques in the literature, the present
method has the unique ability to extract the kernels using physically realistic excitations.  This feature
makes it ideally suited for use with existing wind-tunnel or flight-test data.
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2  Objectives

The objective of this work was to demonstrate the feasibility of developing a Volterra kernel identification
tool for aeroelastic analysis using wind-tunnel and/or flight-test data.  The ultimate objective is to provide
engineers and scientists with a new nonlinear modeling capability to analyze the aeroservoelastic
characteristics of flight vehicles and to formulate economical and physics-based reduced-order models
suitable for control system design.  The specific objectives of the study were to demonstrate the second-
order kernel version of the method, and to show that the method is accurate, robust, and can be extended
to higher-order kernels.  The present paper focuses on the application of the method to unsteady
aerodynamic data from a pitching wing.

3  Background

Aeroelastic studies, such as the prediction of flutter boundaries and limit cycle oscillations, play a critical
role in aircraft safety and design. To perform these analyses with the required accuracy, nonlinear
aerodynamic effects must be included.  The Volterra theory of nonlinear systems addresses the need for
efficient and accurate reduced-order modeling of these unsteady aerodynamic effects.  A critical problem,
however, is the difficulty of identifying the Volterra kernels.  The present paper demonstrates application
of a new identification method that is suitable for use with wind-tunnel and/or flight-test data.

3.1   Importance of Volterra Kernel Identification to Aeroelasticity Studies

The need to incorporate nonlinear aerodynamic effects in aeroelasticity studies of flight vehicles is well
recognized [7-10].  Nonlinear aeroelastic effects can arise from either the structure or the flow.  Structural
nonlinearities may be either of a geometric nature or of material origin.  Aerodynamic nonlinearity arises
from a variety of sources, such as shock motion, the appearance or disappearance of shock waves, and
locally separated and vortical flow.  The work of Reference 7, for example, shows that, even for the
prediction of flutter onset, aerodynamic nonlinearity may have to be taken into account for a wide range
of conditions.

In order to accurately characterize nonlinear unsteady aerodynamic effects in aeroelasticity, the application
of the Volterra theory of nonlinear systems was recently proposed [11-14].  The Volterra series approach
provides a mathematically rigorous approximation technique to describe nonlinear systems.  This theory
asserts that a time-invariant nonlinear system can be modeled as an infinite sum of multidimensional
convolution integrals.  For weakly nonlinear systems, only a few terms in the series need to be modeled.
In the particular case of a truncated second-order system, an additional advantage is that the system may
be represented using a bilinear state space formulation which is amenable for use with modern control
systems [14] and, therefore, aeroservoelastic analyses.  This approach has previously been shown to be
well-suited [11] to the incorporation of nonlinear CFD results into aeroservoelastic analyses.  It will be
argued here that the Volterra theory is also well-suited to the accurate characterization and efficient
modeling of experimental data (i.e., from wind-tunnel models or flight vehicles), for the purpose of
performing vibration, aeroelastic, and aeroservoelastic studies.  These benefits, along with the solid
mathematical foundation upon which the Volterra series approach is based, are of considerable interest
for the modeling of aeroelastic phenomena.

3.2   Difficulty of Volterra Kernel Identification

While the Volterra theory of nonlinear systems is well-established (Volterra [2], Wiener [3]), as a tool it
has received little attention outside electrical engineering and apparently none in aeroelasticity studies,
until the last decade or so.  The main reason for this has to do with the ease of use of linear methods.
However, with the improvement of computational methods and noticeable increases in computing power,
higher-fidelity (i.e., nonlinear) models are presently being sought.
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Another reason for the previously limited use of Volterra theory is the inherent difficulty of identifying
the Volterra kernels. As previously mentioned, the Volterra series is made of a sequence of
multidimensional convolution integrals, and each is associated with an input independent ªkernelº function.
Once the kernels are known, it is formally a straightforward matter to compute the truncated series for any
arbitrary schedule of the system�s input.  Thus, the problem of kernel identification is central to the
usefulness of the method.

Unfortunately, in many cases kernel identification happens to be extremely difficult.  One exact technique,
applicable to discrete-time systems, is the use of unit-sample responses.  Such an approach was
successfully used by Silva [11] to identify kernels from CFD codes.  However, this ªdirectº identification
method does not generalize to kernel identification from experimental data.  In fact, there appears to be
an inverse relationship between accuracy and physical realizability amongst existing Volterra kernel
identification schemes.  Dual-pulse digital filter techniques [11], for example, have been shown to very
accurately identify the second-order Volterra kernel associated with the computed plunging motion
response of an airfoil in transonic flow.  However, inertial effects preclude attempting this kind of
excitation in wind-tunnel tests (much less, flight tests).  Ingenious methods for ªmeasuringº Volterra
kernels from experimental data have been devised over the years, for example: the white noise/cross-
correlation method of Lee and Schetzen [15], or Boyd et al.�s [16] multitone harmonic probing technique
for kernel separation.  In all cases, however, these experimental approaches require that the nonlinear
system under consideration be subjected to very specific excitations, many of which are not applicable to
wind-tunnel models and, indeed, impossible for flight tests.

Thus, an alternative method is required that would allow the identification of the Volterra kernels from
unsteady aerodynamic data.  The requirements for such a method are as follows: the method must use
physically realizable inputs, must be accurate and robust, and must be applicable to existing data (i.e., data
not specifically generated for the purpose of kernel identification), including flight tests.  In addition, the
method should minimize or eliminate the need for analytical assumptions about the underlying kernel(s).

3.3   Method

The proposed method is based on a newly developed extraction technique which has been successfully
applied to the identification of nonlinear indicial kernels [6] from an experimental database.  The details
of the theory are described in Reference 1.  A brief summary is given below.

Let x(t) designate the input to the system (for example, a control surface displacement or modal
amplitude).  Let y(t) designate the output of the system (for example, a generalized aerodynamic force).
The Volterra series expansion of y with respect to x is given by

where  is the n -order Volterra kernel.  The process of Volterra kernel identification falls in theth

general category of inverse problems, since the objective is to determine the internal structure of the
physical (aerodynamic/aeroservoelastic) system under consideration, based on the system�s measured
behavior.  The method takes advantage of the fact that, although the truncated Volterra series is nonlinear
with respect to the input parameter x, the inverse problem (the problem of identifying the Volterra kernels)
remains linear with respect to the kernels.  The approach [1] consists of expanding the unknown kernels
on some known basis function set,
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and solving for the unknown basis function coefficients .  Multiple measurements  of the

system�s behavior are then interpreted as constraints which the unknown basis function coefficients must
simultaneously satisfy.  This results in a linear system of equations which is typically ill-conditioned.  The
task of solving this rank-deficient discrete problem is then handled using one of several available
regularization methods [4,17].

For a more detailed account of the method, the interested reader is referred to Reference 1.  For the
purpose of the application described here, it suffices to mention that this method was designed to be robust
with respect to noise, and to provide good accuracy without sacrificing physical realizability.  Therefore,
the method should be applicable to wind-tunnel and flight-test data.  In particular, it will extend the
usefulness of these data by allowing the formulation of efficient and compact models of unsteady
nonlinear aerodynamic effects for aeroelastic and aeroservoelastic analyses.

4  Results

The extraction method of Reference 1 is used here to identify the first- and second-order Volterra kernels
associated with the aerodynamics of a wing which is dynamically pitched about its quarter chord location.
The wind-tunnel model is considered to be rigid.  The wing had a rectangular planform, with a constant
thickness NACA0015 airfoil profile.  The model was instrumented with a total of 45 pressure taps, divided
equally among three span locations: 0%, 37%, and 80% of the total wing span.  The experiment was
carried out in a low-speed wind-tunnel at the U.S. Air Force Frank J. Seiler Laboratory [18].  A variety
of forced pitching motions were carried out.  In addition to the time dependent pressure profiles, time
history data for the following sectional force coefficients are available: lift coefficient cl, drag coefficient
cd, normal force coefficient cn, tangential force coefficient ct, and pitching moment coefficient cm.

These forced unsteady aerodynamic data have been the topic of several papers by Faller and Schreck and
coworkers [18-20] emphasizing the physics of three-dimensional dynamic stall.  However, the interest here
is in applying the Volterra identification tool developed in this study to a nonlinear ªplantº where the
nonlinearities are of an aerodynamic nature.  The pitching wing database constitutes such a plant.  In
addition, the use of the data is made particularly convenient, due to the existence of several neural network
programs which have been trained to reproduce many aspects of the data with good fidelity.  The neural
network used in this study was shown [20] to replicate not only the constant pitch rate data it was trained
on, but also to be able to predict the flow responses to novel maneuvers (both constant and variable pitch
rates) with surprisingly high accuracy.  For our purpose, the trained neural network can be considered as
a ªblack boxº representation of the time-dependent loads and pressure distributions.  This black box
representation is accurate within a reasonably wide parameter space, and it will be assumed that the flow
responses predicted by the model are ªas goodº as if they were directly measured in wind-tunnel tests.

For all of the results presented below, the wing was first pitched up from 0æ angle of attack to a post-stall
angle of 17æ at a nondimensional pitch rate based on wing chord and freestream velocity of �  = 0.04.+
The angle of attack was then held constant for approximately 35 convective times, so as to eliminate all
prior transients associated with the dynamic stall event.  This new reference condition (� = 17æ) was
chosen because of the known highly nonlinear behavior around this condition [21].  Starting from this new
reference point, the wing can perform various small amplitude motions, and it is the result of these
motions which is analyzed to extract the Volterra kernels.  An example of such a motion is shown in
Figure 1.  Unless otherwise specified, the results presented hereafter all pertain to the sectional lift
coefficient cl at 0% wing span.

The basis functions were chosen to be decaying exponentials.  Nine exponential basis functions (inverse
time constants ranging from 0.5 to 4.5) were used for the first-order kernel.  For the two-dimensional
kernel, either 5�5, 7�7, or 10�10 matrices of time constants in a similar range were used [1].
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Fig. 1  Definition of Reference Condition for Pitching Wing Data Analysis.

As previously mentioned, the difficulty of system identification stems from the fundamentally ill-posed
nature of linear inverse problems.  This point cannot be overemphasized.  The extraction method that was
developed has the desirable characteristics of robustness and ease of use, thanks to the use of
regularization techniques [4,17].  However, the possibility always exists that the results of the extraction
could amount to little more than a sophisticated form of data fitting.  Therefore, in order to ensure that
this is not the case and that the true underlying kernels have been identified, several quality assurance
(verification) steps must be taken.

� The first of these steps is to check that the data used for identification (also referred to as the
training data) can be repredicted using the extracted kernels.  Although this is only a necessary,
not a sufficient, condition, this requirement is not trivial.

� The second verification step is to check that the linear impulse response resulting from the
simultaneous identification of the first- and second-order kernels using nonlinear data matches the
result of a first-order-only extraction based on linear data.  In practice, it may be very difficult to
know with certainty the extent to which the data may be considered linear.  Therefore, this second
step may not always be applicable.  In the present test, however, such data are available and were
used to further the confidence in the results

� The third test is the convergence test.  It must be shown that the results converge to the same
kernels as the training data set is progressively enriched.  Similarly, one should verify that the
results are minimally sensitive to the details of the basis functions chosen.

� The fourth and most important test of the method is to verify that novel data (data not included
in the training) can be predicted on the basis of the extracted kernels. 

Two sets of results will be presented.  The first set corresponds to the case where the kernel extraction
was carried out using only two wing motions.  This case was used to conduct a parametric study
illustrating convergence with respect to the basis function set.  It was later realized, however, that these
extracted kernels did not predict with sufficient accuracy several novel data sets, including simple
harmonic data at specific frequencies.  In other words, these kernels failed test #4 (insufficient training).
This problem was remedied in the second set of results, in which the kernels were extracted on the basis
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of 17 training data sets.  Although full convergence has not been attained, this second set of results are
used to document the cross-predictive ability of the extracted kernels.

4.1   Basis Functions Convergence

Two integrated multistep [22] (wide bandwidth) inputs were used to simultaneously identify the first- and
second-order kernels of the system.  The extraction was repeated three times, using respectively 5�5, 7�7,
and 10�10 two-dimensional basis functions for the second-order kernel.  The extracted first-order kernel
was shown to be insensitive to the choice of two-dimensional basis functions (Figure 2).  The extracted
second-order kernels are shown in Figures 3�5. 

 
Fig. 2 Convergence of Extracted First-Order Volterra

Kernel as a Function of Two-Dimensional Basis
Set.

Fig. 3 Extracted Second-Order Kernel Using 25   
Basis Functions. 

 

Fig. 4 Extracted Second-Order Kernel Using 49  
Basis Functions. 

Fig. 5 Extracted Second-Order Kernel Using 100
Basis Functions. 

Figures 2-5 illustrate the robustness of the results, since both first- and second-order Volterra kernels are
minimally affected by the choice of basis functions, despite a large increase in the number of effective
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degrees of freedom.  To facilitate the comparison between kernels (Figure 6), the data shown in
Figures 3-5 are reduced using four one-dimensional representations of the kernel (radial cuts of the
symmetric two-dimensional kernel at fixed geometric angles) in lieu of one two-dimensional
representation.

Fig. 6   Comparison of Extracted Second-Order Kernels Along Four Radial Cuts. 

The comparison of radial cuts is a more sensitive representation of the differences between the various
two-dimensional kernels.   Although the kernels are not identical, Figure 6 displays good convergence
properties.  In addition, it was shown [1] that the basis function coefficients themselves have a certain
element of structure and appear to converge to a well-defined continuous spectrum.

4.2   Prediction Capability

In this second set of results, the first- and second-order Volterra kernels were extracted using a training
data set which included:

" two small amplitude (0.03æ) integrated multistep inputs;
" a small matrix of sinusoidal excitations �(t) = A sin(3t) ; this matrix was obtained

from the combinations of three amplitudes (A = 0.01æ, 0.03æ, and 0.1æ) and five
angular frequencies (3 = 0.01, 0.02, 0.1, 0.5, and 3.0).

Thus, all of the training motions have an amplitude less than 0.1æ (0.2æ peak-to-peak).

Although the extracted kernels are not believed to be fully converged, they can be used to illustrate the
predictive ability of the model developed thus far.  The following figures show that the extracted kernels
are capable of reproducing accurately not only the training data, but also novel data of a different
character.
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Fig. 7   Reprediction of Training Data (A = 0.1°, 3 = 0.5) From Extracted Kernels. 

Figure 7 shows the truncated two-term Volterra series prediction for one of the sinusoidal training data
sets (A = 0.1æ, 3 = 0.5).  In this figure, the data are represented with symbols; the various lines represent
respectively the linear component of the prediction (i.e., the result of the first-order convolution), the
nonlinear component of the prediction (i.e., the result of the second-order convolution), and the total
prediction, which is the sum of the two.  The total prediction is in good agreement with the data.  The
ability to predict novel data is illustrated in Figure 8.

Fig. 8   Novel Data Prediction From Extracted Kernels ; Input: � = 0.5° sin(0.3t) sin(2.8t +!).    
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The total prediction (labeled TWO-TERM PREDICTION) is also seen to be in good agreement with the
data.  The amplitude of the oscillations is five times the largest amplitude used in training.  Equally good
agreement was shown at lesser amplitudes, while the accuracy of the prediction was found to deteriorate
slightly at 0.7æ amplitude.  This is consistent with the a posteriori examination of the static nonlinearity
of the system (not shown), which revealed that the point at which a quadratic fit ceases to be an accurate
approximation of the nonlinear response is around �  = 0.5æ.  Thus, the data of Figure 8 correspondstatic

to the farthest conditions from the training data at which one could expect a two-term truncation of the
Volterra series to adequately describe the system.  Reference 1 reports similar results for sectional pitching
moment coefficient cm.  The agreement demonstrated in Figure 8 shows that first- and second-order
Volterra kernels extracted from primarily oscillatory data can be used to predict novel data whose
parameters lie far outside the training range.

5  Conclusions

A feasibility study of an aerodynamic data-based Volterra identification system has been conducted.
A preliminary version of the method, capable of extracting first- and second-order Volterra kernels from
unsteady data was successfully demonstrated.  The core technology of this system is based on the well-
established Volterra-Wiener theory of nonlinear systems, coupled with parameter identification techniques.
The present paper presented an application of the method to the nonlinear unsteady aerodynamics of a
wing undergoing oscillations in pitch.  The developed method can be used to extract Volterra kernels
using physically realizable inputs and is, therefore, suitable for use in aeroelastic studies from experimental
data.  The extraction technique has been shown [1] to be accurate, convergent, and robust, and to admit
formal extensions for the identification of higher-order kernels.  The technology has the potential to
provide scientists and engineers with an economical and practical tool to characterize the nonlinear
aeroservoelastic response of flight vehicles during the conceptual, preliminary, and final design phases.
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